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• Environmental pollution
heavy metals, pesticides, PMx, ozone, PCBs, EMF, RF, etc.

• Engineered systems• Engineered systems
traffic safety, bridge design, airplanes, spacecraft, nuclear plants

• Financial investments• Financial investments
portfolio planning, consultation, instrument evaluation

• Occupational hazards
manufacturing and factory workers, farm workers, hospital staffmanufacturing and factory workers, farm workers, hospital staff

• Food safety and consumer product safety
benzene in Perrier, E. coli in beef, children’s toysbenzene in Perrier, E. coli in beef, children’s toys

• Ecosystems and biological resources
endangered species, fisheries and reserve management



• Total dose is decomposed by pathway

– Dose from dermal exposure on hands

– Dose from dermal exposures to rest of body

– Dose from inhalation

(concentration in air, exposure duration, breathing rate,(concentration in air, exposure duration, breathing rate,
penetration factor, absorption efficiency)

• Takes account of related factors• Takes account of related factors

– Acres, gallons per acre, mixing time

– Body mass, frequency of hand washing, etc.– Body mass, frequency of hand washing, etc.



• Sometimes little or even no data
– Updating is rarely used– Updating is rarely used

• Very simple arithmetic (or logical) calculations
– Occasionally, finite element meshes or differential equations– Occasionally, finite element meshes or differential equations

• Usually small in number of inputs• Usually small in number of inputs
– Nuclear power plants are the exception

• Results are important and often high profile• Results are important and often high profile
– But the approach is being used ever more widely



• Uses deterministic point values

• Mostly (but usually not all) extremes

• Actually an interval analysis

• Says how bad it could it be, but not• Says how bad it could it be, but not
how likely that outcome is



X X+YYX X+YY

• Requires specifying the full joint distribution,• Requires specifying the full joint distribution,
i.e., all the marginals and all their dependencies

• Often we need to guess about a lot of it



• Probability theory

– Can handle likelihoods and dependence well– Can handle likelihoods and dependence well

– Has an inadequate model of ignorance

– Lying: saying more than you really know– Lying: saying more than you really know

• Interval analysis

– Can handle epistemic uncertainty (ignorance) well

– Inadequately models frequency and dependence

– Cowardice: saying less than you know



• Reliable, conservative assessments of tail risks

• Using available information but without forcing
analysts to make unjustified assumptionsanalysts to make unjustified assumptions

• Neither computationally expensive nor• Neither computationally expensive nor
intellectually taxing
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• Bounds on the probability at a value
Chance the value will be 15 or less is between 0 and 25%Chance the value will be 15 or less is between 0 and 25%

• Bounds on the value at a probability
95th percentile is between 40 and 70

1
95th percentile is between 40 and 70

1

0
0 20 40 60 80

X



Probability
distribution

Probability
box Interval

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y 1 1 1

distribution box Interval

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y
C

u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

0 10 20 30 40
0

10 20 30 40
0

10 20 30
0

Not a uniform
distribution

0 10 20 30 40 10 20 30 40 10 20 30



• Marries intervals with probability theory

• Distinguishes variability and incertitude

• Solves many problems in uncertainty analysis
– Input distributions unknown

– Imperfectly known correlation and dependency

– Large measurement error, censoring, small sample sizes

– Model uncertainty– Model uncertainty



• All standard mathematical operations• All standard mathematical operations
– Arithmetic operations (+, , ×, ÷, ^, min, max)

– Logical operations (and, or, not, if, etc.)– Logical operations (and, or, not, if, etc.)

– Transformations (exp, ln, sin, tan, abs, sqrt, etc.)

– Backcalculation (deconvolutions, updating)– Backcalculation (deconvolutions, updating)

– Magnitude comparisons (<, ≤, >, ≥, )

– Other operations (envelope, mixture, etc.)

• Faster than Monte Carlo• Faster than Monte Carlo

• Guaranteed to bounds answer

• Good solutions often easy to compute



• When inputs are distributions, its answers
conform with probability theory

• When inputs are intervals, it agrees with• When inputs are intervals, it agrees with
interval analysis
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A[1,3] A[3,5]A[2,4]

independence

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=1/9

A+B[5,13]
prob=1/9

A+B[4,12]
prob=1/9

B[6,10]
q = 1/3

A+B[7,13]
prob=1/9

A+B[9,15]
prob=1/9

A+B[8,14]
prob=1/9

B[8,12]

q2 = 1/3 prob=1/9 prob=1/9prob=1/9

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob=1/9

A+B[11,17]
prob=1/9

A+B[10,16]
prob=1/9
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• Assumption

• Modeling• Modeling

• Robust Bayesian analysis

• Constraint propagation

• Data with incertitude• Data with incertitude
– Measurement error

– Sampling error

– Censoring



• Sometimes measurements are intervals

• Statisticians often ignore interval uncertainty, or
model it as a probability distributionmodel it as a probability distribution

• “Interval uncertainty doesn’t exist in real life”• “Interval uncertainty doesn’t exist in real life”



• Periodic observations• Periodic observations
When did the fish in my aquarium die during the night?

• Plus-or-minus measurement uncertainties• Plus-or-minus measurement uncertainties
Coarse measurements, measurements from digital readouts

• Non-detects and data censoring• Non-detects and data censoring
Chemical detection limits, studies prematurely terminated

• Privacy requirements• Privacy requirements
Epidemiological or medical information, census data

• Theoretical constraints
Concentrations, solubilities, probabilities, survival rates

• Bounding studies
Presumed or hypothetical limits in what-if calculations
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• Statistics for data sets that contain intervals

• Some are easy to compute• Some are easy to compute
• Empirical distribution, mean, median, percentiles, etc.

• Some are tricky, but easy for a computer
• Variance, upper confidence limit, correlation, etc.• Variance, upper confidence limit, correlation, etc.

• Tradeoff between more versus better data

• Review just published as a Sandia report
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Location: Massachusetts and ConnecticutLocation: Massachusetts and Connecticut

Receptor: Adult human hunters of waterfowl

Contaminant: PCBs (polychorinated biphenyls)Contaminant: PCBs (polychorinated biphenyls)

Exposure route: dietary consumption of
contaminated waterfowlcontaminated waterfowl

Based on the assessment for non-cancer risks from PCB to adult hunters who consume
contaminated waterfowl described in Human Health Risk Assessment: GE/Housatonic River
Site: Rest of River, Volume IV, DCN: GE-031203-ABMP, April 2003, Weston Solutions (WestSite: Rest of River, Volume IV, DCN: GE-031203-ABMP, April 2003, Weston Solutions (West
Chester, Pennsylvania), Avatar Environmental (Exton, Pennsylvania), and Applied
Biomathematics (Setauket, New York).



LOSSCIREF
HQ

EF = mmms(1, 52, 5.4, 10) meals per year // exposure frequency, censored data, n = 23

RfDBWAT
HQ

EF = mmms(1, 52, 5.4, 10) meals per year // exposure frequency, censored data, n = 23

IR = mmms(1.5, 675, 188, 113) grams per meal // poultry ingestion rate from EPA’s EFH

C = [7.1, 9.73] mg per kg // exposure point (mean) concentration

LOSS = 0 // loss due to cookingLOSS = 0 // loss due to cooking

AT = 365.25 days per year // averaging time (not just units conversion)

BW = mixture(BWfemale, BWmale) // Brainard and Burmaster (1992)

BWmale = lognormal(171, 30) pounds // adult male n = 9,983BWmale = lognormal(171, 30) pounds // adult male n = 9,983

BWfemale = lognormal(145, 30) pounds // adult female n = 10,339

RfD = 0.00002 mg per kg per day // reference dose considered tolerable
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mean [3.8, 31]
standard deviation [0, 186]

1

standard deviation [0, 186]
median [0.6, 55]
95th percentile [3.5 , 384]95th percentile [3.5 , 384]
range [0.01, 1230]
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• “Automatically verified calculations”

• The computations are guaranteed to enclose
the true results (so long as the inputs do)the true results (so long as the inputs do)

• You can still be wrong, but the method• You can still be wrong, but the method
won’t be the reason if you are



When uncertainty makes no difference
(because results are so clear), bounding gives(because results are so clear), bounding gives
confidence in the reliability of the decision

When uncertainty obscures the decision
(i) use results to identify inputs to study better, or

(ii) use other criteria within probability bounds(ii) use other criteria within probability bounds



• Sure, if uncertainty is huge

• This should happen (it’s not “unhelpful”)• This should happen (it’s not “unhelpful”)

• If you think the bounds are too wide, then• If you think the bounds are too wide, then
put in whatever information is missing

• If there isn’t any such information, do you
want to mislead your readers?want to mislead your readers?



• Probability doesn’t accumulate gross
uncertainty in an intuitive wayuncertainty in an intuitive way

• Precision of the answer (measured as cv)• Precision of the answer (measured as cv)
depends strongly on the number of inputs

• The more inputs, the tighter the answer,
irrespective of the distribution shape



Uniform Uniform Uniform Uniform



UniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniformUniform

Where does this
surety come from?surety come from?
What justifies it?



• P-boxes give a vacuous answer if all you
provide are vacuous inputs

• Conventional probability theory, at least as
it’s naively applied, seems to manufactureit’s naively applied, seems to manufacture
certainty out of nothing

• This is why some critics say probabilistic
risk analyses are “smoke and mirrors”risk analyses are “smoke and mirrors”



• Maximum entropy hides uncertainty

• Can’t propagate with sensitivity analysis• Can’t propagate with sensitivity analysis

• Bounding best, but must reflect all• Bounding best, but must reflect all
available information





• Not all variables are independent

– Body size and skin surface area– Body size and skin surface area

– “Common-cause” variables

• Known dependencies should be modeled

• What can we do when we don’t know them?



• Independent

• Perfect (comonotonic)• Perfect (comonotonic)

• Opposite (countermonotonic)



A[1,3] A[3,5]A[2,4]

perfect positive

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=1/3

A+B[5,13]
prob=0

A+B[4,12]
prob=0

B[6,10]
q = 1/3

A+B[7,13]
prob=0

A+B[9,15]
prob=0

A+B[8,14]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob=0

A+B[11,17]
prob=1/3

A+B[10,16]
prob=0



A[1,3] A[3,5]A[2,4]

perfect positive

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=1/3

A+B[5,13]
prob=0

A+B[4,12]
prob=0

B[6,10]
q = 1/3

A+B[7,13]
prob=0

A+B[9,15]
prob=0

A+B[8,14]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob=0

A+B[11,17]
prob=1/3

A+B[10,16]
prob=0



A[1,3] A[3,5]A[2,4]

opposite positive

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=0

A+B[5,13]
prob=1/3

A+B[4,12]
prob=0

B[6,10]
q = 1/3

A+B[7,13]
prob=0

A+B[9,15]
prob=0

A+B[8,14]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob= 1/3

A+B[11,17]
prob=0

A+B[10,16]
prob=0



A[1,3] A[3,5]A[2,4]

opposite positive

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=0

A+B[5,13]
prob=1/3

A+B[4,12]
prob=0

B[6,10]
q = 1/3

A+B[7,13]
prob=0

A+B[9,15]
prob=0

A+B[8,14]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob= 1/3

A+B[11,17]
prob=0

A+B[10,16]
prob=0
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• Sensitivity analyses usually used
– Vary correlation coefficient between 1 and +1

• But this underestimates the true uncertainty
– Example: suppose X, Y ~ uniform(0,24) but we don’t– Example: suppose X, Y ~ uniform(0,24) but we don’t

know the dependence between X and Y
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• Independent

• Perfectly positive• Perfectly positive

• Opposite

• Positively or negatively associated• Positively or negatively associated

• Specified correlation coefficient

• Nonlinear dependence (copula)

• Unknown dependence• Unknown dependence



They make no assumption about dependence (Fréchet 1935)They make no assumption about dependence (Fréchet 1935)

max(0, P(A)+P(B)–1)  P(A & B)  min(P(A), P(B))

max(P(A), P(B))  P(A  B)  min(1, P(A)+P(B))max(P(A), P(B))  P(A  B)  min(1, P(A)+P(B))



A[1,3] A[3,5]A[2,4]

Fréchet case

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=[0,1/3]

A+B[5,13]
prob=[0,1/3]

A+B[4,12]
prob=[0,1/3]

B[6,10]
q = 1/3

A+B[7,13]
prob=[0,1/3]

A+B[9,15]
prob=[0,1/3]

A+B[8,14]
prob=[0,1/3]

B[8,12]

q2 = 1/3 prob=[0,1/3] prob=[0,1/3]prob=[0,1/3]

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob=[0,1/3]

A+B[11,17]
prob=[0,1/3]

A+B[10,16]
prob=[0,1/3]
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0
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A+B



1

0

0 3 6 9 12 15 18

A+B



• Interval estimates of probabilities don’t
reflect the fact that the sum must equal onereflect the fact that the sum must equal one

• Resulting p-box is too fat

• Linear programming needed to get the• Linear programming needed to get the
optimal answer using this approach

• Frank, Nelsen and Sklar gave a way to
compute the optimal answer directlycompute the optimal answer directly



If X ~ F and Y ~ G, then the distribution of X+Y is

  C yGxFdCzGF )(),())(,(,

If X ~ F and Y ~ G, then the distribution of X+Y is



 
zyx

C yGxFdCzGF )(),())(,(,

where C is the copula between F and G. In any case, and




where C is the copula between F and G. In any case, and
irrespective of this dependence, this distribution is bounded by













1),()(mininf,0,1)()(maxsup yGxFyGxF
yxzyxz

This formula can be generalized to work with bounds on F and G.
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0
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A+B



1

FréchetFréchet

10 20 30 40 500
0

X,Y ~ uniform(1,24)

10 20 30 40 500

X + Y

0



• Some information may be available by which the
p-boxes could be tightened over the Fréchet case
without specifying the dependence perfectly, e.g.,without specifying the dependence perfectly, e.g.,

• Dependence is positive (PQD)

P(X  x, Y  y)  P(X  x) P(Y  y) for all x and yP(X  x, Y  y)  P(X  x) P(Y  y) for all x and y

     





 )(1)(11inf,)()(sup yGxFyGxF

• Variables are uncorrelated

     








)(1)(11inf,)()(sup yGxFyGxF
yxzyxz

Pearson correlation r is zero



1

PositivePositive

10 20 30 40 500
0

X,Y ~ uniform(1,24)

10 20 30 40 500

X + Y

0



1

0.5

1

Frank
(medial)

4 6 8 10 12
0

0.5

1

Mardia
(Kendall)

4 6 8 10 12
0

0.5

1

(Kendall)

X ~ normal(5,1)
Y ~ uniform(2,5)

4 6 8 10 12
0

0.5
Clayton Y ~ uniform(2,5)

various correlations
and dependence

4 6 8 10 12
0

X + Y
and dependence
functions (copulas)



1 Pearson-
normalnormal

10 20 30 40 500
0

X,Y ~ uniform(1,24)

10 20 30 40 500

X + Y

0



1

Uncorrelated

10 20 30 40 500
0

X,Y ~ uniform(1,24)

10 20 30 40 500

X + Y

0



Fréchet

r  0 0  r

NQD PQDr = 0

opposite, W independence,  perfect, Mopposite, W independence,  perfect, M



• Random-set independent For precise

o Epistemically independent

o Strongly independent

o Repetition independent

probabilities,
these are all
the same.

o Repetition independent

• Perfectly associated

• Oppositely associated

• Known copula These cases• Known copula

• Specified copula family and correlation

• Known functional relationship

These cases
yield precise
distributions
from precise

• Positively quadrant dependent (PQD)

• Negatively quadrant dependent (NQD)

• Known or interval-bounded correlation

from precise
input
distributions

• Known or interval-bounded correlation

• Fréchet case



Location: Superfund site in CaliforniaLocation: Superfund site in California

Receptor: adults in neighboring community

Contaminant: dioxinContaminant: dioxin

Exposure route: inhalation of windborne soil

Modified from Table II and IV in Copeland, T.L., A.M. Holbrow, J.M Otani, K.T. Conner and
D.J. Paustenbach 1994. Use of probabilistic methods to understand the conservativism inD.J. Paustenbach 1994. Use of probabilistic methods to understand the conservativism in
California’s approach to assessing health risks posed by air contaminant. Journal of the Air and
Waste Management Association 44: 1399-1413.



R = normal(20, 2) //respiration rate, m3/dayR = normal(20, 2) //respiration rate, m3/day

CGL = 2 //concentration at ground level, mg/m3

Finh = uniform(0.46,1) //fraction of particulates retained in lung, [unitless]inh

ED = exponential(11) //exposure duration, years

EF = uniform(0.58, 1) //exposure frequency, fraction of a year

BW = normal(64.2, 13.19) //receptor body weight, kgBW = normal(64.2, 13.19) //receptor body weight, kg

AT = gumbel(70, 8) //averaging time, years



11 1FR ED11 1FinhR ED

0.4 0.6 0.8 1
0

10 20 30
0

0 20 40 60
0

1

0.4 0.6 0.8 1
0

10 20 30
0

1

0 20 40 60
0

1

EF ATBWEF ATBW

0.6 0.8 1
0

50 70 90 110
0

30 50 70 90
0



11

No assumptions about dependencies

All variables mutually independent

No assumptions about dependencies

0 1 2

0

0 1 2

TDI, mg kg1 day1



• Impossible with sensitivity analysis since it’s• Impossible with sensitivity analysis since it’s
an infinite-dimensional problem

• Kolmogorov-Fréchet bounding lets you be sure

• Can be a large or a small consequence





• Just means and variances, and ranges

• Makes use of general formulas, and also• Makes use of general formulas, and also
special formulas for named distribution shapes

• Finite ranges imply moments always exist and
often improve bounds formulas substantiallyoften improve bounds formulas substantially

• Intersects bounds from formulas and inferred• Intersects bounds from formulas and inferred
from distribution bounds



BoundariesBoundaries Williamson-Frank-Nelsen-Sklar Boundaries

Moments

Mathematical
operation

Boundaries

Moments

mmms mmms
interval
statistics

interval
statistics

Moments
operation

Moments
Rowe, inter alia

This auxiliary effort often substantially
improves (tightens) the output p-boxesimproves (tightens) the output p-boxes



• Interval arithmetic traditionally does not address
the dependence between its argumentsthe dependence between its arguments

• But if we extend it so it does, we can improve• But if we extend it so it does, we can improve
the results



Perfect
(comonotonic)

Nondependent
(the Fréchet case)

Opposite
(countermonotonic)

1 1 1

(comonotonic)(the Fréchet case)(countermonotonic)

v v v

0 u 1 0 u 1 0 u 1
0 0 0



• A model of dependence that’s parameterized
by a (scalar) value called the “correlation
coefficient”coefficient”

    : [1, +1]  D = 2[0,1][0,1]

• A correlation model is called “complete” if

   (1) = , (0) = , (+1) =



r = 1 r = 0 r = +1r = 1 r = 0 r = +1

D(r) = { (u,v) : max(0, ur, u1+r)  v  min(1, u+1r, u+2+r)}
u  [0,1], v  [0,1]u  [0,1], v  [0,1]

f(A, B) = {c : c = f(u(a2–a1)+a1, v(b2–b1)+b1), (u,v)  D }
 

f(A, B) = {c : c = f(u(a2–a1)+a1, v(b2–b1)+b1), (u,v)  D }
A+B = [env(w(A, r)+b1, a1+w(B,r)), env(a2+w(B,1+r),w(A,1+r)+b2)]

a1 if p < 0
w([a ,a ], p) = a if 1 < pw([a1,a2], p) = a2 if 1 < p

p(a2a1)+a1 otherwise



r = 1 r = 0 r = +1r = 1 r = 0 r = +1



[ 5, 14] Perfect

[ 8, 11] Opposite

[ 7.1, 11.9] Corner-shaving (r = 0.7)[ 7.1, 11.9] Corner-shaving (r = 0.7)

[ 7.27, 11.73] Elliptic (r = 0.7)
A = [2,5]

[ 5, 14] Upper, left

[ 5, 11] Lower, left

A = [2,5]
B = [3,9]

[ 5, 11] Lower, left

[ 8, 14] Upper, right

[ 5, 14] Lower, right

[ 6.5, 12.5] Diamond[ 6.5, 12.5] Diamond

[ 5, 14] Nondependent



[ 5, 14] Perfect

[ 8, 11] Opposite

[ 7.1, 11.9] Corner-shaving (r = 0.7)[ 7.1, 11.9] Corner-shaving (r = 0.7)

[ 7.27, 11.73] Elliptic (r = 0.7)
A = [2,5]

[ 5, 14] Upper, left

[ 5, 11] Lower, left

A = [2,5]
B = [3,9]

[ 5, 11] Lower, left

[ 8, 14] Upper, right

[ 5, 14] Lower, right

[ 6.5, 12.5] Diamond[ 6.5, 12.5] Diamond

[ 5, 14] Nondependent



A[1,3] A[3,5]A[2,4]
opposite
nondependent

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[3,11]
prob=0

A+B[5,13]
prob=1/3

A+B[4,12]
prob=0

B[6,10]
q = 1/3

A+B[7,13]
prob=0

A+B[9,15]
prob=0

A+B[8,14]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[9,15] A+B[11,17]A+B[10,16]B[8,12]
q3 = 1/3

A+B[9,15]
prob= 1/3

A+B[11,17]
prob=0

A+B[10,16]
prob=0



1.00

0.75

0.25

0.50

0.00

0.25

0 10 20

A+B

0 10 20



A[1,3] A[3,5]A[2,4]
opposite
opposite

A[1,3]
p1 = 1/3

A[3,5]
p3 = 1/3

A[2,4]
p2 = 1/3

B[2,8]
q1 = 1/3

A+B[5,9]
prob=0

A+B[7,11]
prob=1/3

A+B[6,10]
prob=0

B[6,10]
q = 1/3

A+B[9,11]
prob=0

A+B[11,13]
prob=0

A+B[10,12]
prob=1/3

B[8,12]

q2 = 1/3 prob=0 prob=0prob=1/3

A+B[11,13] A+B[13,15]A+B[12,14]B[8,12]
q3 = 1/3

A+B[11,13]
prob= 1/3

A+B[13,15]
prob=0

A+B[12,14]
prob=0



1.00

0.50

0.75

0.25

0.50

0.00

0.25

0 10 20

A+B

0 10 20



opposite /
nondependent

opposite /
opposite

A+B
0 10 20



• Stochastic dependence• Stochastic dependence

– Amongthe cells of the Cartesian product

• Interval dependence

– Within each of the cells

• Evidently, they can be considered separately• Evidently, they can be considered separately

• Lead to different results in various combinations



• Interval analysis automatically accounts for• Interval analysis automatically accounts for
all possible dependencies

– Unlike probability theory, where the default– Unlike probability theory, where the default
assumption often underestimates uncertainty

• Information about dependencies isn’t usually
used to tighten results, but it can beused to tighten results, but it can be

• Interval and stochastic dependence are
distinct, and may interact to tighten results





• Represent comparative probability judgments, e.g.,
event A is at least as likely as event B

• Give unique expectations needed for making decisions

• Give unique conditional probabilities needed for
making inferences

• Maintain best possible bounds through updating

(Walley 2000)(Walley 2000)



• This is really a generic term referring to the subject
matter of many disparate theories that do not
assume a unique underlying probability measureassume a unique underlying probability measure

• Often expressed in a lower probability measure• Often expressed in a lower probability measure
which gives the lower probability for every
possible event in some universal set

• Often expressed in terms of closed, convex sets of
probability distributions (not the same as a p-box)probability distributions (not the same as a p-box)



• Consider the set of all Bernoulli distributions
(which are discrete with mass at only 0 and 1)(which are discrete with mass at only 0 and 1)

p = 0 p = 1p = ½p = 1/3 p = 2/3

0 1 0 10 1 0 10 1

• Clearly, there’s a one-dimensional family of
such distributions, parameterized by how thesuch distributions, parameterized by how the
mass is distributed between the two points



• This one-dimensional family constitutes a
space of distributions in which each pointspace of distributions in which each point
represents a distribution

0 10 1



• When the distributions have 3 point masses,
the space becomes two-dimensional and has

c
a triangular shape

(0,0,1)

• The points on this
surface are those

a

surface are those
whose coordinates
add to one (1,0,0)

b

add to one (1,0,0)

(0,1,0)



• For discrete distributions with n masses, the
space, called a simplex, has (n1)-dimensionsspace, called a simplex, has (n1)-dimensions

• One degree of freedom is lost to the constraint
that probabilities sum to onethat probabilities sum to one

• For the continuous case, the space becomes• For the continuous case, the space becomes
infinite-dimensional, or you could be content
to use discrete approximationsto use discrete approximations



1.0

0.9

1.0

0.9

c

0.6

0.9

0.8

0.7

0.5

0.6

0.9

0.8

0.7

0.5

c

0.5

0.4

0.3

0.2

0.5

0.4

0.3

0.2

a

c

0

0.2

0.1

0

0.2

0.1

c = 0a
a

b

c = 0a

c

a

ab
b



• 3 possibilities for our team: win, draw, loss• 3 possibilities for our team: win, draw, loss

• Suppose we have qualitative judgments:

‘Not win’ is at least as probable as win

Win is at least as probable as draw

Draw is at least as probable as loss

• These constrain the probability distribution P• These constrain the probability distribution P

P(win)  ½

P(win)  P(draw)P(win)  P(draw)

P(draw)  P(loss)



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(draw)  P(loss)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(draw)  P(loss)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½

P(draw)  P(loss)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½



P(draw)  P(loss)

P(win)  P(draw)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½



P(draw)  P(loss)

P(win)  P(draw)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½



P(draw)  P(loss)

P(win)  P(draw)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½



P(draw)  P(loss)

P(win)  P(draw)

P(win)=1P(draw)=1



P(loss)=1

P(win)  ½P(win)  ½



P(draw)  P(loss)

P(win)  P(draw)

P(win)=1P(draw)=1



• Natural extension tells us the extreme points
(obtained by linear programming) that are(obtained by linear programming) that are
consistent with these constraints are

(½, ½, 0)(½, ½, 0)
(½, 1/4, 1/4)
(1/3, 1/3, 1/3)( /3, /3, /3)

• The points represent extreme distributions

• Their convex hull gives all distributions that• Their convex hull gives all distributions that
are consistent with the constraints



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



P(loss)=1

P(win)=1P(draw)=1



• The closed, convex set of probability
distributions (the red triangular region)
expresses the uncertainty

• This set of distributions is smaller than the set• This set of distributions is smaller than the set
implied by bounds on the three probabilities
(the yellow area enclosing the triangle)(the yellow area enclosing the triangle)

• This difference can affect expectations of
functions that depend on the events, andfunctions that depend on the events, and
conditional probabilities



• Knowledge and judgments can be used to
define a set of possible probability measuresdefine a set of possible probability measures

– All distributions within bounds are possible

– Only distributions having a given shape– Only distributions having a given shape

– Probability of an event is within some interval

– Event A is at least as probable as event B– Event A is at least as probable as event B

– Nothing is known about the probability of C



• As was true for interval probabilities and
probability bounds, it can be easy to getprobability bounds, it can be easy to get
rigorous bounds, but best possible bounds
may require mathematical programmingmay require mathematical programming





• In the context of precise probabilities, there
was a unique notion of independence

• In the context of imprecise probabilities,
however, this notion disintegrates into severalhowever, this notion disintegrates into several
distinct concepts (Couso et al. 1999)

• The different kinds of independence behave
differently in computations (Fetz 2001)differently in computations (Fetz 2001)



For precise probabilities, all these definitionsFor precise probabilities, all these definitions
are equivalent, so there’s a single concept

• H(x,y) = F(x) G(y) , for all values x and y

• P(XI, YJ) = P(XI) P(YJ), for any I, J  R

• h(x,y) = f(x)g(y) , for all values x and y• h(x,y) = f(x)g(y) , for all values x and y

• E(w(X) z(Y)) = E(w(X)) E(z(Y)), for arbitrary w, z

• X,Y(t,s) = X(t) Y(s), for arbitrary t and s• X,Y(t,s) = X(t) Y(s), for arbitrary t and s

P(X  x) = F(x), P(Y  y) = G(y) and P(X  x, Y  y) = H(x, y);

f,gand h are the density analogs of F,G and H; andf,gand h are the density analogs of F,G and H; and

 denotes the Fourier transform



• Random-set independence

• Epistemic independence• Epistemic independence

• Strong independence

• Repetition independence• Repetition independence

• Others?

Which should be called ‘independence’?Which should be called ‘independence’?



• X and Y are random variables

• FX and FY are their probability distributions• FX and FY are their probability distributions

• FX and FY aren’t known precisely, but we
know they’re within classes M and Mknow they’re within classes MX and MY

X ~ FX  MXX ~ FX  MX

Y ~ FY  MY



 • X ~ FX  MX and Y ~ FY  MY

• X and Y are stochastically independent

• All possible combinations of distributions from
MX and MY are allowed

 X and Y are strongly independent

Complete absence of any relationship between X, YComplete absence of any relationship between X, Y

MX,Y = {H : H(x, y) = FX(x) FY(y),

F  M , F  M }FX  MX, FY  MY}



 • X ~ FX  MX and Y ~ FY  MY

• E(f(X)|Y) = E(f(X)) and

E(f(Y)|X) = E(f(Y)) for all functions f

where E is the smallest mean over all possible
probability distributionsprobability distributions

 X and Y are epistemically independent

Lower bounds on expectations generalize the
conditions P(X|Y) = P(X) and P(Y|X) = P(Y)conditions P(X|Y) = P(X) and P(Y|X) = P(Y)



• Embodied in Cartesian products

• X and Y with mass functions m and m are• X and Y with mass functions mX and mY are
random-set independent if the Dempster-Shafer
structure for their joint distribution has mass
function m(A A ) = m (A ) m (A ) whenever Afunction m(A1A2) = mX (A1) mY (A2) whenever A1
is a focal element of X and A2 is a focal element of
Y, and m(A) = 0 otherwiseY, and m(A) = 0 otherwise

• Often easiest to compute



Unknown = FréchetThese cases of

Random-set

These cases of
independence
are nested.

Epistemic

Random-set

StrongStrong



Unknown = FréchetThese cases of

Random-set

Uncorrelated

These cases of
independence
are nested.

Epistemic

Random-set

StrongStrong



• X = [1, +1], Y ={([1, 0], ½), ([0, 1], ½)}

1 11

X
1

Y

0 0

• If X and Y are “independent”, what is Z = XY ?

1 0 +1
0

X
1 0 +1

0

Y

• If X and Y are “independent”, what is Z = XY ?



Y
([1, 0], ½) ([0, 1], ½)([1, 0], ½) ([0, 1], ½)

X ([1, +1], 1) ([1, +1], ½) ([1, +1], ½)

1
The Cartesian product with

1

XYone row and two columns
produces this p-box

1 0 +1
0

XY



• Clearly, EX = [1,+1] and EY=[½, +½].

• Therefore, E(XY) = [½, +½].• Therefore, E(XY) = [½, +½].

• But if this is the mean of the product, and its
range is [1,+1], then we know betterrange is [1,+1], then we know better
bounds on the CDF.

1

XY
1

1 0 +1
0

XY



• What’s the probability PZ that Z < 0?

• Z < 0 only if X < 0 or Y < 0 (but not both)• Z < 0 only if X < 0 or Y < 0 (but not both)

• PZ = PX(1PY) + PY(1PX), where

P = P(X < 0), P = P(Y < 0)PX = P(X < 0), PY = P(Y < 0)

• But PY is ½ by construction
1

XYY

• So PZ = ½PX + ½(1PX) = ½

• Thus, zero is the median of Z 1 0 +1
0

XY

XY

• Thus, zero is the median of Z

• Knowing median and range improves bounds

1 0 +1
XY



• These bounds are realized by solutions

If X = 0, then Z=0If X = 0, then Z=0

If X = Y = B = {(1, ½),(+1, ½)}, then Z = B

1
B

1

Z=0
1

XY

1 0 +1
0

1 0 +1
0

Z=0

1 0 +1
0

XY

• So these bounds are also best possible

XY



• These bounds are realized by solutions

If X = 0, then Z=0If X = 0, then Z=0

If X = Y = B = {(1, ½),(+1, ½)}, then Z = B

1
B

1

Z=0
1

XY

1 0 +1
0

1 0 +1
0

Z=0

1 0 +1
0

XY

• So these bounds are also best possible

XY



• These bounds are realized by solutions

If X = 0, then Z=0If X = 0, then Z=0

If X = Y = B = {(1, ½),(+1, ½)}, then Z = B

1
B

1

Z=0
1

XY

1 0 +1
0

1 0 +1
0

Z=0

1 0 +1
0

XY

• So these bounds are also best possible

XY



Random-set
independence

Strong
independence

Moment
independence

1

XY

1

XYXY

1
independence independenceindependence

0 00
1 0 +1

0

XY
1 0 +1

0

XY
1 0 +1

0

XY

The answer depends on what one meant by “independent”.



• The example illustrates a practical difference between
random-set independence and strong independence

• It disproves the conjecture that the convolution of
uncertain numbers is not affected by dependenceuncertain numbers is not affected by dependence
assumptions if at least one of them is an interval

• It shows convolutions with probability boxes and• It shows convolutions with probability boxes and
Dempster-Shafer structures may not be best-possible



• Random-set independence is conservative

• Using the Cartesian product approach is
always rigorous, though may not be optimalalways rigorous, though may not be optimal

• Convenient methods to obtain tighter bounds• Convenient methods to obtain tighter bounds
under other kinds of independence await
derivationderivation





• P-boxes are very crude, but they can
express the two main forms of uncertainty

• Despite their limitations, p-boxes may be• Despite their limitations, p-boxes may be
useful for modeling uncertain numbers

• Simple arithmetic and logical expressions
are easy to compute and understandare easy to compute and understand



• Give best-possible bounds on non-tail risks

• Conveniently get best-possible bounds• Conveniently get best-possible bounds
when dependencies are subtle

• Show what’s most likely within the box



• 2-D Monte Carlo is not comprehensive
– Inadequate model of ignorance

– Dependence among parameters of a distribution

– Uncertainty about dependence (Fréchet)

– Non-denumerable model uncertainty

• Probability bounds analysis is not optimal
– Independence between parameters of a distribution

– Ternary (and higher) Fréchet operations



• Arithmetic
• Logical computations (and, or, not)
• Backcalculation, updating, deconvolution• Backcalculation, updating, deconvolution
• Decision analysis
• Statistics of data with interval uncertainty• Statistics of data with interval uncertainty
• Sensitivity analysis
• Validation• Validation
• Non-linear ordinary differential equations
• Black-box strategies (Cauchy, quadratic, etc.)

Slide shows and/or papers on these topics are available on request



http://www.sandia.gov/epistemic/Reports/SAND2002-4015.pdf

(introduction to p-boxes and related structures)

http://www.ramas.com/depend.zip

(handling dependencies in probabilistic uncertainty modeling)(handling dependencies in probabilistic uncertainty modeling)

http://www.ramas.com/bayes.pdf

(introduction to Bayesian and robust Bayesian methods in risk analysis)

http://www.ramas.com/intstats.pdf

(statistics for data that may contain interval uncertainty)

http://maths.dur.ac.uk/~dma31jm/durham-intro.pdf

(Gert de Cooman’s gentle introduction to imprecise probabilities)(Gert de Cooman’s gentle introduction to imprecise probabilities)

http://www.cs.cmu.edu/~qbayes/Tutorial/quasi-bayesian.html

(Fabio Cozman’s introduction to imprecise probabilities)

http://idsia.ch/~zaffalon/events/school2004/school.htm

(notes from a week-long summer school on imprecise probabilities)



• Dan Berleant

– Statool (free)– Statool (free)

• Applied Biomathematics• Applied Biomathematics

– PBDemo (free)

– Risk Calc (commercial)– Risk Calc (commercial)

– S3 and S4 packages for R (request beta version)





• Bayesian approaches don’t distinguish ignorance
from equiprobability

• Neuroimaging and clinical psychology shows
humans strongly distinguish uncertainty from risk
– Most humans regularly and strongly deviate from Bayes– Most humans regularly and strongly deviate from Bayes
– Hsu (2005) reported that people who have brain lesions

associated with the site believed to handle uncertainty
behave according to the Bayesian normative rulesbehave according to the Bayesian normative rules

• Bayesians are too sure of themselves (e.g., Clippy)



• Bayesian approaches don’t distinguish ignorance
from equiprobability

• Neuroimaging and clinical psychology shows
humans strongly distinguish uncertainty from risk
– Most humans regularly and strongly deviate from Bayes– Most humans regularly and strongly deviate from Bayes
– Hsu (2005) reported that people who have brain lesions

associated with the site believed to handle uncertainty
behave according to the Bayesian normative rulesbehave according to the Bayesian normative rules

• Bayesians are too sure of themselves (e.g., Clippy)



• Precautionary principle

• Ellsberg paradox• Ellsberg paradox
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• About 70% should enclose true value (fewer than half do)

• Overconfidence is “almost universal in all measurements of• Overconfidence is “almost universal in all measurements of
physical quantities” (Morgan and Henrion 1990)

• Humans (expert and otherwise) routinely grossly overconfident• Humans (expert and otherwise) routinely grossly overconfident
90% confidence intervals typically enclose their true values only
about 30 to 50% of the time

• Schlyakhter suggested we automatically widen all bounds



• But not all sets of assumptions are equal!• But not all sets of assumptions are equal!

Point value Linear functionPoint value Linear function

Interval range Monotonic function

Entire real line Any function

Normal distribution Independence

Unimodal distribution Known correlation

Any distribution Any dependenceAny distribution Any dependence

• Like to discharge unwarranted assumptions• Like to discharge unwarranted assumptions
“Certainties lead to doubt; doubts lead to certainty”



• .What assumptions are needed to get an answer?
It’s always possible to find someIt’s always possible to find some

• What’s the quantitative answer that doesn’t
.depend on any unjustified assumptions?.depend on any unjustified assumptions?

Recognizing when you’ve made an unjustified
assumption may take some disciplineassumption may take some discipline

Sometimes, “I don’t know” is the right answerSometimes, “I don’t know” is the right answer



• Sample data
when there’s a lot, converges to a precise distribution

• Moment information• Moment information
mean, median, mode, variance, range, etc.

• Structural information• Structural information
unimodality, symmetry, positivity, (log)normality, etc.

• Modeling and allometry• Modeling and allometry
express the problem in terms of subproblems

• Can also use precise distributions• Can also use precise distributions
fitted or assumed



r = 1 r = 0 r = +1

• Not complete (because r=0 isn’t nondependence)

A+B = [d, d] + (a1 + a2 + b1 + b2) / 2

d = (d 2 + d 2 + r d d ), d = (a  a )/2, d = (b  b )/2d = (d1
2 + d2

2 + r d1 d2), d1 = (a2  a1)/2, d2 = (b2  b1)/2





• Needed for cleanup and remediation planning

• Untangles an equation in uncertain numbers
when we know all but one of the variableswhen we know all but one of the variables

• For instance, backcalculation finds B such
that A+B = C, from estimates for A and Cthat A+B = C, from estimates for A and C



• Inverting the equation doesn’t work

• Available analytical algorithms are unstable
for almost all problemsfor almost all problems

• Except in a few special cases, Monte Carlo• Except in a few special cases, Monte Carlo
simulation cannot compute backcalculations;
trial and error methods are requiredtrial and error methods are required



prescribed knownunknown

Dose = Concentration × Intake

Concentration = Dose / Intake

When concentration is put back into the forward
equation, the resulting dose is wider than plannedequation, the resulting dose is wider than planned



• Suppose dose should be less than 32, and intake• Suppose dose should be less than 32, and intake
ranges between 2 and 8

• If we solved for concentration by division, we’d
get a distribution ranging between zero and 16

• But if we put that answer back into the equation

Dose = Concentration  IntakeDose = Concentration  Intake

we’d get a distribution with values as large as
128, which is four times larger than planned128, which is four times larger than planned



Suppose A + B = C, where
A = normal(5, 1)
C = {0  C, median  1.5, 90th %ile  35, max  50}C = {0  C, median  1.5, 90th %ile  35, max  50}

1 11 1

2 3 4 5 6 7 80 0 10 20 30 40 50 60
0

2 3 4 5 6 7 80 0 10 20 30 40 50 60
0



• The backcalculation algorithm basically
reverses the forward convolution

• Not hard at all…but a little messy to show

• Any distribution• Any distribution
totally inside B is
sure to satisfy the

1

sure to satisfy the
constraint … it’s
a “kernel”

-10 0 10 20 30 40 500



A + B = C*  C

1

0
-10 0 10 20 30 40 50 60

0



• Precise distributions can’t express the target

• A concentration distribution giving a prescribed• A concentration distribution giving a prescribed
distribution of doses seems to say we want
some doses to be highsome doses to be high

• Any distribution to the left would be better• Any distribution to the left would be better

• A p-box on the dose target expresses this idea



• Planning cleanup requires backcalculation

• Monte Carlo methods don’t generally work
except in a trial-and-error approachexcept in a trial-and-error approach

• Can express the dose target as a p-box• Can express the dose target as a p-box


