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Risk assessments

Environmental pollution

Engineered systems

Financial investments

Occupational hazards

Food safety and consumer product safety

Ecosystems and biological resources




Example: pesticides & farmworkers

» Total dose 1s decomposed by pathway

— Dose from dermal exposure on hands

— Dose from dermal exposures to rest of body

— Dose from inhalation

 Takes account of related factors
— Acres, gallons per acre, mixing time

— Body mass, frequency of hand washing, etc.




Typical problems

Sometimes little or even no data
— Updating 1s rarely used

Very simple arithmetic (or logical) calculations

— Occasionally, finite element meshes or differential equations

Usually small in number of inputs

— Nuclear power plants are the exception

Results are important and often high profile

— But the approach 1s being used ever more widely




Worst-case analysis

Uses deterministic point values

Mostly (but usually not all) extremes
Actually an interval analysis

Says how bad 1t could 1t be, but not
how likely that outcome 1s




Monte Carlo simulation

VNG

X

* Requires specifying the full joint distribution,
1.e., all the marginals and all their dependencies

« Often we need to guess about a lot of 1t




Probability vs. intervals

* Probability theory

— Can handle likelihoods and dependence well

— Has an inadequate model of ignorance

— Lying: saying more than you really know

* Interval analysis
— Can handle epistemic uncertainty (ignorance) well
— Inadequately models frequency and dependence

— Cowardice: saying less than you know




What’s needed

 Reliable, conservative assessments of tail risks

« Using available information but without forcing
analysts to make unjustified assumptions

* Neither computationally expensive nor
intellectually taxing




Deterministic
calculation

Probabilistic Interval

convolution analysis




Deterministic
calculation

Probabilistic Interval
convolution analysis

Second-order

probability




Deterministic

calculation

/N

Probabilistic Interval
convolution analysis

N/

Second-order Probability
probability bounds analysis




Probability box (p-box)

Interval bounds on an cumulative distribution function (CDF)
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Probability box (p-box)

Interval bounds on an cumulative distribution function (CDF)
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Probability box (p-box)

Interval bounds on an cumulative distribution function (CDF)
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Probability box (p-box)

Interval bounds on an cumulative distribution function (CDF)
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Duality

* Bounds on the probability at a value

* Bounds on the value at a probability
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Generalizes an “uncertain number”

Probability Probability
distribution box
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Probability bounds analysis

* Marries intervals with probability theory

* Distinguishes variability and incertitude

* Solves many problems in uncertainty analysis
— Input distributions unknown
— Impertectly known correlation and dependency
— Large measurement error, censoring, small sample sizes

— Model uncertainty




Calculations

All standard mathematical operations
— Arithmetic operations

— Logical operations

— Transformations

— Backcalculation

— Magnitude comparisons
— Other operations

Faster than Monte Carlo
Guaranteed to bounds answer
Good solutions often easy to compute




Generalization of methods

* When 1nputs are distributions, 1ts answers
conform with probability theory

 When inputs are intervals, 1t agrees with
interval analysis




Probability bounds arithmetic

Cumulative Probabilit
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Probability bounds arithmetic
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Cartesian product

+ Ae[1,3] Ae[2,4] Aec[3,5]
A B p,=1/3 p, = 1/3 p; = 1/3

independence

Be([2,8] A+Be[3,11] A+Be[4,12] A+Be[5,13]
q,=1/3 prob=1/9 prob=1/9 prob=1/9

Be[6,10] A+Be[7,13] A+Be[8,14] A+Be[9,15]
q,=1/3 prob=1/9 prob=1/9 prob=1/9

Be[8,12] A+Be[9,15] A+Be[10,16] A+Be[11,17]
q; = 1/3 prob=1/9 prob=1/9 prob=1/9
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Where do we get p-boxes?

Assumption
Modeling
Robust Bayesian analysis

Constraint propagation
Data with incertitude




Data of poor repute

« Sometimes measurements are intervals

 Statisticians often 1gnore interval uncertainty, or
model it as a probability distribution

* “Interval uncertainty doesn’t exist in real life”




Incertitude 1s common 1n data

Periodic observations

e 1S-OT-1Y b )
Non-detects and data censoring

Privacy requirements

Theoretical constraints

Bounding studies




A tale of two data sets

Skinny data Puffy data
1.00, 1.52° 3.5,6.4
2.68, 2.98 6.9, 8.8]
7.52,7.67 6.1, 8.4
7.73, 8.35 PR N
9.44, 9.99 3.5,9.7]
3.66, 4.58 6.5,9.9
0.15, 3.8]
4.5,4.9]

7.1,7.9]




Empirical distributions
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Many possible precise data sets
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Many possible precise data sets
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Interval statistics

Statistics for data sets that contain intervals

Some are easy to compute
« Empirical distribution, mean, median, percentiles, etc.

Some are tricky, but easy for a computer
* Variance, upper confidence limit, correlation, etc.

Tradeoff between more versus better data

Review just published as a Sandia report




Constraint propagation

min max ] = 0 '
mean min mean=mode max min median=mode

symmetric, mean, sd min mean, sd max




Maximum entropy erases uncertainty

K - l

min  mean max mode max

AN’ -

mean, sd max




Example: PCBs and duck hunters

Location: Massachusetts and Connecticut

Receptor: Adult human hunters of waterfowl
Contaminant: PCBs (polychorinated biphenyls)

Exposure route: dietary consumption of
contaminated waterfowl




Hazard quotient

. ~ EFxIRxCx(1-LOSS)

AT x BW x RfD

EF =mmms(1, 52, 5.4, 10) meals per year exposure frequency, censored data, n =23
IR =mmms(1.5, 675, 188, 113) grams per meal // poultry ingestion rate from EPA’s EFH
C=1[7.1,9.73] mg per kg exposure point (mean) concentration
LOSS =0 loss due to cooking
AT =365.25 days per year averaging time (not just units conversion)
BW = mixture(BW i, .a1eo BW nate) Brainard and Burmaster (1992)
BW. ... = lognormal(171, 30) pounds adult male n = 9,983
BW,,....e = lognormal(145, 30) pounds adult female n = 10,339
RfD = 0.00002 mg per kg per day reference dose considered tolerable




\EF

111111111111111111'\ ........................... [T
10 20 30 40 50 60
meals per year grams per meal

o
-
@)
1
Y
|
—
0}
g
)
O
-
<
o)
)
)
%)
<
[

[ N N | T N N A I
[y
(SO (VN | N T N T O




RGN
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Rigorousness

» “Automatically verified calculations™

* The computations are guaranteed to enclose
the true results (so long as the inputs do)

* You can still be wrong, but the method
won’t be the reason 1f you are




How to use the results

When uncertainty makes no difference

(because results are so clear), bounding gives
confidence 1n the reliability of the decision

When uncertainty obscures the decision

(i) use results to 1dentify inputs to study better, or

(ii) use other criteria within probability bounds




Can uncertainty swamp the answer?

Sure, if uncertainty 1s huge

This should happen (it’s not “unhelpful”)

If you think the bounds are too wide, then
put in whatever information is missing

If there 1sn’t any such information, do you
want to mislead your readers?




Monte Carlo 1s problematic

* Probability doesn’t accumulate gross
uncertainty in an intuitive way

* Precision of the answer (measured as cv)
depends strongly on the number of inputs

* The more nputs, the tighter the answer,
irrespective of the distribution shape




A few grossly uncertain inputs

Uniform - Uniform .

Uniform Uniform

Probability




A lot of grossly uncertain inputs...

TETETTTEEr ettt Uniform

Probability

Where does this

surety come from?
What justifies it?




Smoke and mirrors certainty

* P-boxes give a vacuous answer 1f all you
provide are vacuous Inputs

* Conventional probability theory, at least as
1it’s naively applied, seems to manufacture
certainty out of nothing

* This 1s why some critics say probabilistic
risk analyses are “smoke and mirrors™




Uncertainty about distribution shape

 Maximum entropy hides uncertainty

* Can’t propagate with sensitivity analysis

* Bounding best, but must reflect all
available information




Dependence




Dependence

* Not all variables are independent

— “Common-cause’ variables
* Known dependencies should be modeled

« What can we do when we don’t know them?




How to do other dependencies?

* Independent

* Opposite (countermonotonic)




Perfect dependence

+ Ae[1,3] Ae[2,4] Aec[3,5]
A B p,=1/3 p, = 1/3 p; = 1/3

perfect positive

Be([2,8] A+Be[3,11] A+Be[4,12] A+Be[5,13]
q,=1/3 prob=1/3 prob=0 prob=0

Be[6,10] A+Be[7,13] A+Be[8,14] A+Be[9,15]
q, = 1/3 prob=0 prob=1/3 prob=0

Be[8,12] A+Be[9,15]  A+Be[10,16]  A+Be[11,17]
q;=1/3 prob=0 prob=0 prob=1/3




Perfect dependence

+ Ae[1,3] Ae[2,4] Aec[3,5]
A B p,=1/3 p, = 1/3 p; = 1/3

perfect positive

Be([2,8] A+Be[3,11] A+Be[4,12] A+Be[5,13]
q,=1/3 prob=1/3 prob=0 prob=0

Be[6,10] A+Be[7,13] A+Be[8,14] A+Be[9,15]
q,=1/3 prob=0 prob=1/3 prob=0

Be[8,12] A+Be[9,15]  A+Be[10,16]  A+Be[11,17]
q;=1/3 prob=0 prob=0 prob=1/3




Opposite dependence

+ Ae[1,3] Ae[2,4] Aec[3,5]
A B p,=1/3 p, = 1/3 p; = 1/3

opposite positive

Be[2,8] A+Be[3,11] A+Bel4,12] A+Be[5,13]
q,=1/3 prob=0 prob=0 prob=1/3

Be[6,10] A+Be[7,13] A+Be[8,14] A+Be[9,15]
q, = 1/3 prob=0 prob=1/3 prob=0

Be[8,12] A+Be[9,15] A+Be[10,16] A+Be[11,17]
q; = 1/3 prob= 1/3 prob=0 prob=0




Opposite dependence

A+B

opposite positive

Ae[1,3]
ps=1/3

Ac[2,4]
p, =1/3

AYSIKRS)
p; = 1/3

Be[2,8]
q,=1/3

Be[6,10]
q,=1/3

Be[8,12]
q; = 1/3

A+Be[3,11]
prob=0

A+Be[7,13]
prob=0

A+Be[9,195]
prob= 1/3

A+Bel4,12]
prob=0

A+Be[8,14]
prob=1/3

A+B<[10,16]
prob=0

A+Be[5,13]
prob=1/3

A+Bc[9,15]
prob=0

A+Be[11,17]
prob=0




Perfect and opposite dependencies
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Uncertainty about dependence

* Sensitivity analyses usually used

— Vary correlation coefficient between —1 and +1

* But this underestimates the true uncertainty

— Example: suppose X, Y ~ uniform(0,24) but we don’t
know the dependence between X and Y




Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient

i

R
o=
=
O

o

—

o,

D)
2
~—
=

=

=
>
@)

=




Varying the correlation coetficient
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Varying the correlation coetficient
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Varying the correlation coetficient
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Counterexample




Counterexample
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What about other dependencies?

Independent

Opposite

Positively or negatively associated
Specified correlation coefficient
Nonlinear dependence (copula)
Unknown dependence




Fréchet inequalities

They make no assumption about dependence (Fréchet 1935)
max(0, P(4)+P(B)-1) < <min(P(A4), P(B))

max(P(4), P(B)) < < min(1, P(4)+P(B))




Fréchet case (no assumption)

A+B

Fréchet case

Bel[2,8]
q,=1/3

Be[6,10]
q,=1/3

Be[8,12]
q;=1/3

A+Be[3,11]
prob=[0,1/3]

A+Be[7,13]
prob=[0,1/3]

A+Be[9,19]
prob=[0,1/3]

A+Be[4,12]
prob=[0,1/3]

A+Be[8,14]
prob=[0,1/3]

A+Be[10,16]
prob=[0,1/3]

A+Be[5,13]
prob=[0,1/3]

A+Be[9,15]
prob=[0,1/3]

A+Be[11,17]
prob=[0,1/3]
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Naive Fréchet case
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Fréchet can be improved

Interval estimates of probabilities don’t
reflect the fact that the sum must equal one

Resulting p-box 1s too fat

Linear programming needed to get the
optimal answer using this approach

Frank, Nelsen and Sklar gave a way to
compute the optimal answer directly




Frank, Nelsen and Sklar (1987)

If X~ F and Y ~ G, then the distribution of X+Y 1s

T, X\

0. (F.G)2)= [dC(F(x),G(»))

xX+y<z

where C 1s the copula between F and G. In any case, and
irrespective of this dependence, this distribution 1s bounded by

sup max (F(x)+ G(y)—1,0), inf min(F(x)+G(y),1)

z=x+Yy

z=x+y

This formula can be generalized to work with bounds on F and G.




Best possible bounds
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Best possible bounds
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Unknown dependence
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X, Y ~ uniform(1,24)
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Between independence and Fréchet

e Some information may be available by which the
p-boxes could be tightened over the Fréchet case

\/ '.. '.. vahake ¥~ .‘.'..'.'-' -

* Dependence 1s positive (PQD)
PX<x,Y<y)2P(X<x)P(Y<y)forall xand y

{ sup (F(x)G(»), inf (1-(1—F ()1~ G(y)))}

z=x+y

 Variables are uncorrelated
Pearson correlation 7 1s zero




Unknown but positive dependence
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Can model dependence exactly too

: Frank
"] (medial)

: Mardia
“] (Kendall)

X ~normal(5,1)

Y ~uniform(2,5)
various correlations
and dependence
functions (copulas)
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Varying correlation between —1 and +1

Pearson-
normal
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Uncorrelated variables

y 4

Uncorrelated
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Dependence tree

Fréchet

opposite, W independence, 11 perfect, M




Dependence between p-boxes

Random-set independent For precise

Epistemically independent 4./- probabilities,

Strongly independent these are all
the same.

R pr\phh faYa) IﬂAPﬂPﬂA

L\Vt.l\./ CILIUILL 111 \./tJ Vllu

Perfectly assoc1ated

Oppositely associated

Known copula These cases
Specified copula family and correlation / yield precise

Known functional relationship d1str1but1ens
from precise

Positively quadrant dependent (PQD) input
Negatively quadrant dependent (NQD) distributions
Known or interval-bounded correlation

Fréchet case




Example: dioxin inhalation

Location: Superfund site in California

Receptor: adults in neighboring community
Contaminant: dioxin

Exposure route: 1nhalation of windborne soil




Total daily intake from inhalation

// R _
= =2 = i

\ ¥

N B A Tl a B 4

R =normal(20, 2) respiration rate, m/day
Co =2 concentration at ground level, mg/m?
F., = uniform(0.46,1) fraction of particulates retained in lung, [unitless]
ED = exponential(11) exposure duration, years
EF = uniform(0.58, 1) exposure frequency, fraction of a year
BW =normal(64.2, 13.19) receptor body weight, kg
AT = gumbel(70, 8) averaging time, years




Input distributions
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RGN

No assumptions about dependencies
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Uncertainty about dependence

* Impossible with sensitivity analysis since 1t’s
an infinite-dimensional problem

» Kolmogorov-Fréchet bounding lets you be sure

» Can be a large or a small consequence




Further wrinkles




Simultaneous moment propagation

Just means and variances, and ranges

Makes use of general formulas, and also
special formulas for named distribution shapes

Finite ranges imply moments always exist and
often improve bounds formulas substantially

Intersects bounds from formulas and inferred
from distribution bounds




Inputs Output

B Oun d ari e S Williamson-Frank-Nelsen-Sklar I B Oun d ari e S

statistics

o l ‘mmms Mathematical 11 ‘ e

operation
Moments =————— Moments

This auxihary effort often substantially
improves (tightens) the output p-boxes




Interval dependence within cells

* Interval arithmetic traditionally does not address

* But if we extend 1t so 1t does, we can improve
the results




Three special cases

Opposite Nondependent Perfect

(countermonotonic) (the Fréchet case) (comonotonic)




Correlation

* A model of dependence that’s parameterized
by a (scalar) value called the “correlation
coefficient”

0 : [_1, ‘|‘1] N cﬁ — 2[0,1]><[O,1]

A correlation model 1s called “complete™ 1f

o=\, p0)=. p+1)=




Corner-shaving dependence
r=—1 r=>0 r=+1

A 0 B I i

D) = { (u,v) : max(0, —u—r, u—1+r) <v<min(1l, u+1-r, —u+2+r)}
u € |0,1],v €[0,1]

M4, B) = {c:c=fu(a,—a,)+a;, v(b,~b))+b)), (uv) € D}
A+B = [env(wW(A4, —r)+b,, a;+w(B,—r)), env(a,tw(B,1+r),w(A4,1+r)+b,)]
a, iftp <0

w(la,.a,], p) =y a, if 1 <p
p(a,—a,)+a, otherwise
\




Other complete correlation families

NwRl

Namez
N"N“NH | | ||MLMH|V




' 5, 14] Perfect

8, 11] Opposite

7.1, 11.9]  Corner-shaving (r = —0.7)

$7.27,11.73] Elliptic (» = —0.7)

5, 14] Upper, left

5, 11 Lower, left

8, 14] Upper, right

' 5, 14 Lower, right

[6.5,12.5] Diamond

\
\
y
A
h
A
¢
B

[ 5, 14] Nondependent




' 5, 14] Perfect

8, 11] Opposite

7.1, 11.9] Corner—shavmg (r=-0.7)

7.27. 11, 73 Ellipg -—o 7)
., \Jl)p 161L

Lower, left

[ 8, 14] Upper, right

[ 5, 14] Lower, right

[6.5,12.5] Diamond

[ 5, 14] Nondependent




Opposite/nondependent

A+B

opposite
nondependent

Ac[1,3]
ps=1/3

Ac[2,4]
p, =1/3

Ac[3,9]
p; = 1/3

Be[2,8]
q,=1/3

Be[6,10]
q,=1/3

Be[8,12]
q; = 1/3

A+Be[3,11]
prob=0

A+Be[7,13]
prob=0

A+Be[9,195]
prob= 1/3

A+Bel4,12]
prob=0

A+Be[8,14]
prob=1/3

A+B<[10,16]
prob=0

A+Be[5,13]
prob=1/3

A+Bc[9,15]
prob=0

A+Be[11,17]
prob=0
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A+B

opposite
opposite

Ae[1,3]
ps=1/3

Opposite / opposite

Ac[2,4]
p, =1/3

Ac[3,9]
p; = 1/3

Be[2,8]
q,=1/3

Be[6,10]
q,=1/3

Be[8,12]
q; = 1/3

A+Be[5,9]
prob=0

A+Be[9,11]
prob=0

A+Be[11,13]
prob= 1/3

A+Be[6,10]
prob=0

A+Be[10,12]
prob=1/3

A+Be[12,14]
prob=0

A+Be[7,11]
prob=1/3

A+Be[11,13]
prob=0

A+Be[13,19]
prob=0
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Nesting (as we’d expect)

opposite /
nondependent




Two levels and kinds of dependence

Stochastic dependence
— Amongthe cells of the Cartesian product

Interval dependence
— Within each of the cells

Evidently, they can be considered separately

[Lead to different results 1in various combinations




Take-home messages

 Interval analysis automatically accounts for
all possible dependencies

— Unlike probability theory, where the default
assumption often underestimates uncertainty

* Information about dependencies 1sn’t usually
used to tighten results, but it can be

 Interval and stochastic dependence are
distinct, and may interact to tighten results




When p-boxes won’t do




What bounding probability can’t do

Represent , €.2.,
event A 1s at least as likely as event B

Give unique needed for making decisions

G1ve unique needed for
making inferences

Maintain best possible bounds through
(Walley 2000)




Imprecise probabilities

* This 1s really a generic term referring to the subject
matter of many disparate theories that do not
assume a unique underlying probability measure

Often expressed 1n a lower probability measure
which gives the lower probability for every
possible event in some universal set

Often expressed 1n terms of closed, convex sets of
probability distributions (not the same as a p-box)




Sets of distribution functions

e Consider the set of all Bernoulli distributions
(which are discrete with mass at only 0 and 1)

[y by o1

* Clearly, there’s a one-dimensional family of
such distributions, parameterized by how the
mass 1s distributed between the two points




Space of distributions

* This one-dimensional family constitutes a
space of distributions 1n which each point
represents a distribution

P




Three-dimensional case

* When the distributions have 3 point masses,
the space becomes two-dimensional and has
a triangular shape

(0,0,1) NS

* The points on this
surface are those
whose coordinates
add to one




Simplex

* For discrete distributions with » masses, the
space, called a , has (n—1)-dimensions

* One degree of freedom 1is lost to the constraint
that probabilities sum to one

* For the continuous case, the space becomes
infinite-dimensional, or you could be content
to use discrete approximations
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Walley’s (2000) football game

3 possibilities for our team: win, draw, loss

* Suppose we have qualitative judgments:

‘Not win’ 1s at least as probable as win
Win 1s at least as probable as draw

Draw 1s at least as probable as loss

* These constrain the probability distribution P
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P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




|
P(loss)=0




P(loss)=0




P(lgss)=1

P(lolss)ZO




P(loss)=0




Natural extension

* Natural extension tells us the extreme points
(obtained by linear programming) that are
consistent with these constraints are

* The points represent extreme distributions

* Their convex hull gives all distributions that
are consistent with the constraints
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P(loss)=0




P(lolss)=0




P(lolss)=0
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P(loss)=0
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P(loss)=0
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|
P(loss)=0




|
P(loss)=0




So what?

* The closed, convex set of probability
distributions (the red triangular region)
expresses the uncertainty

* This set of distributions 1s than the set
implied by bounds on the three probabilities
(the yellow area enclosing the triangle)

 This difference can affect expectations of
functions that depend on the events, and
conditional probabilities




Credal set

* Knowledge and judgments can be used to
define a set of possible probability measures

— All distributions within bounds are possible

— Only distributions having a given shape

— Probability of an event 1s within some interval
— Event A 1s at least as probable as event B

— Nothing 1s known about the probability of C




Take-home lesson

* As was true for interval probabilities and
probability bounds, it can be easy to get
bounds, but bounds
may require mathematical programming




Independence 1n IP




Independence

 In the context of precise probabilities, there
was a unique notion of independence

* In the context of imprecise probabilities,
however, this notion disintegrates into several
distinct concepts (Couso et al. 1999)

* The different kinds of independence behave
differently in computations (Fetz 2001)




Equivalent definitions of independence

* H(x,y)=F(x) G(y), for all values x and y

« P(Xel, YeJ)=P(Xel)P(YeJ), forany I,J < R

e h(x,y) =flx)gy), for all values x and y

« E(w(X) z(Y)) = Emw(X)) E(z(Y)), for arbitrary w, z
* Oy (5,5) = O (0) Oyls), for arbitrary 7 and s

PX<x)=F(x),P(Y<y)=G(y)and P(X<x, Y<y)=H(x, y);
f,gand & are the density analogs of F,G and H; and
¢ denotes the Fourier transform




Imprecise probability independence

Random-set independence

Strong independence

Repetition independence
Others?




Notation

e X and Y are random variables

* F,and F', aren’t known precisely, but we
know they’re within classes M, and M,

X~F,e M,
Y~F,e M,




Strong independence

s X~F,e M,andY~F, e M,
X and Y are stochastically independent

* All possible combinations of distributions from
M, and M, are allowed

— X and Y are stromgy independent

Complete absence of any relationship between X, Y

‘MX,Y: {H: H(x, y) = F(x) FA»),
Foe M, F,e M}




Epistemic independence

s X~F,e M,andY~F, e M,

« E(f(X)|Y) = E(f(X)) and
E(AY)1X) = E(AY)) for all functions f

where E is the smallest mean over all possible
probability distributions

— X and Y are

Lower bounds on expectations generalize the

conditions P(X|Y) = P(X) and P(Y|X) = P(Y)




Random-set independence

 Embodied in Cartesian products

ana ¥ with mass tunctions m, and m ., ar¢
random-set independent 1f the f()empstgr-Shafer
structure for their joint distribution has mass
function m(4,x4,) = m, (4,) m, (4,) whenever 4,
1s a focal element of X and 4, 1s a focal element of

Y, and m(A4) = 0 otherwise

« Often easiest to compute




Unknown = Fréchet

These cases of
independence
are nested.

Random-set




Unknown = Fréchet

These cases of
independence eet”
are nested.

seeso0ee,,

o ® e
°
®

Uncorrelated

Random-set




Interesting example

* X=[-L+1], Y=~1,0],"%), (0, 1], 2);

17 17

X Y

0 +1 0 +1
X )4

* If Xand Y are “independent”, what 1s Z= XY ?




Compute via Yager’s convolution

Y
(-1, 0], %) ([0, 17, )
([-1, +1], %) ([-1, +1], )

The Cartesian product with
one row and two columns
produces this p-box

L




But consider the means

o Clearly, EX=[-1,+1] and EY=[-1, +'4].

« But if this 1s the mean of the product, and its
range 1s [—1,+1], then we know better

bounds on the CDF.




And consider the quantity signs

What’s the probability P, that Z < (0?

A
. Aaln ' A . a . a ara aTalla
v ) C v vA®

U [ U \_J \J L/

P,=P(1-P,) +P,1-P,), where

P,=PX<0), P,=P(Y<0)
But Py 1s 2 by construction 1 xy
So P, =P, + %(1-P,) =% :
Thus, zero 1s the median of Z

1]

0 )9y+ll |

Knowing median and range improves bounds




Best possible

» These bounds are realized by solutions

[fX=Y=B={(-1, %),(+1, %)}, then Z=B

1] 17 —
: B\ 1 XY

()-

10+ VY

1 )9y+ll |

* So these bounds are also best possible




Best possible

» These bounds are realized by solutions

[fX=Y=B={(-1, %),(+1, %)}, then Z=B

I- I-
E B\ E

()-

10+ VY

1 )I%/J’Il |

* So these bounds are also best possible




Best possible

» These bounds are realized by solutions

[fX=Y=B={(-1, %),(+1, %)}, then Z=B

IERT:

T 0 DUl g

* So these bounds are also best possible




So which 1s correct?

Random-set Moment Strong
independence independence independence

17 17 _
XY /XT/ | XY

/

-1 0 +1 -1 0 +1 -1 0 +1
XY XY XY

The answer depends on what one meant by “independent”.




So what?

* The example 1llustrates a practical difference between
random-set independence and strong independence

It disproves the conjecture that the convolution of
uncertain numbers 1s not affected by dependence
assumptions 1f at least one of them 1s an interval

It shows convolutions with probability boxes and
Dempster-Shafer structures may not be best-possible




Strategy for risk analysts

« Random-set independence 1s conservative

» Using the Cartesian product approach 1s
always rigorous, though may not be optimal

* Convenient methods to obtain tighter bounds
under other kinds of independence await
derivation




Conclusions




Uncertain numbers

* P-boxes are very crude, but they can
express the two main forms of uncertainty

* Despite their limitations, p-boxes may be
useful for modeling uncertain numbers

* Simple arithmetic and logical expressions
are easy to compute and understand




What p-boxes can’t do

* (G1ve best-possible bounds on non-tail risks

* Conveniently get best-possible bounds
when dependencies are subtle

* Show what’s most likely within the box




2MC simulations don’t fill p-boxes

» 2-D Monte Carlo 1s not comprehensive
— Inadequate model of 1ignorance

— Dependence among parameters of a distribution
— Uncertainty about dependence (Fréchet)
— Non-denumerable model uncertainty

* Probability bounds analysis 1s not optimal
— Independence between parameters of a distribution
— Ternary (and higher) Fréchet operations




Maturing methodology

Arithmetic

Logical computations (and, or, not)
Backcalculation, updating, deconvolution
Decision analysis

Statistics of data with interval uncertainty
Sensitivity analysis

Validation

Non-linear ordinary differential equations
Black-box strategies (Cauchy, quadratic, etc.)

Slide shows and/or papers on these topics are available on request




Web-accessible reading

(introduction to p-boxes and related structures)

(handling dependencies in probabilistic uncertainty modeling)

(introduction to Bayesian and robust Bayesian methods in risk analysis)

(statistics for data that may contain interval uncertainty)

(Gert de Cooman’s gentle introduction to imprecise probabilities)

(Fabio Cozman’s introduction to imprecise probabilities)

(notes from a week-long summer school on imprecise probabilities)




Software

 Dan Berleant
— Statool (free)

* Applied Biomathematics
— PBDemo (free)
— Risk Calc (commercial)

— S3 and S4 packages for R (request beta version)







Ignorance and variability

* Bayesian approaches don’t distinguish 1gnorance
from equiprobability

* Neuroimaging and clinical psychology shows
humans strongly distinguish uncertainty from risk
— Most humans regularly and strongly deviate from Bayes

— Hsu (2005) reported that people who have brain lesions
associated with the site believed to handle uncertainty
behave according to the Bayesian normative rules




Ignorance and variability

* Bayesian approaches don’t distinguish 1gnorance
from equiprobability

* Neuroimaging and clinical psychology shows
humans strongly distinguish uncertainty from risk
— Most humans regularly and strongly deviate from Bayes

— Hsu (2005) reported that people who have brain lesions
associated with the site believed to handle uncertainty
behave according to the Bayesian normative rules

* Bayesians are too sure of themselves (e.g., -




Varnability v. uncertainty

* Precautionary principle




History of the speed of light
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History of overconfidence

« About 70% should enclose true value (fewer than half do)

‘ ) - aAaVas a " ¢¢ a . . -

physical quantities” (Morgan and Henrion 1990)

 Humans (expert and otherwise) routinely grossly overconfident

90% confidence intervals typically enclose their true values only
about 30 to 50% of the time

« Schlyakhter suggested we automatically widen all bounds




Everyone makes assumptions

* But not all sets of assumptions are equal!

Point value

Interval range
Entire real line

Normal distribution Independence
Unimodal distribution Known correlation
Any distribution Any dependence

* Like to discharge unwarranted assumptions
“Certainties lead to doubt; doubts lead to certainty”™




Two paths

* What assumptions are needed to get an answer?

It’s always possible to find some

 What’s the quantitative answer that doesn’t
depend on any unjustified assumptions?

Recognizing when you’ve made an unjustified
assumption may take some discipline

Sometimes, “I don’t know” is the right answer




How to specify p-box imnputs

Sample data

when there’s a lot, converges to a precise distribution

Moment information

mean, median, mode, variance, range, etc.

Structural information

unimodality, symmetry, positivity, (log)normality, etc.

Modeling and allometry

express the problem in terms of subproblems

Can also use precise distributions

fitted or assumed




Elliptic dependence

r=-—1 r=-+1

r=20
r ‘r 1Vr\

N N I \ & /
MNENAA '\ L I 4T 4V

* Not complete (because »=0 1sn’t nondependence)

A+tB=[-d,d]+(a +a, + b, +b,) /2
d=\d>+d2+rd d).d =(a—a)2.d=(b,—b)?2







Backcalculation

* Needed for cleanup and remediation planning

« Untangles an equation in uncertain numbers
when we know all but one of the variables

* For instance, backcalculation finds B such
that A+B = C, from estimates for 4 and C




Hard with probability distributions

 Inverting the equation doesn’t work

» Available analytical algorithms are unstable
for almost all problems

* Except in a few special cases, Monte Carlo
simulation cannot compute backcalculations;
trial and error methods are required




Can’t just invert the equation

When 1s put back into the forward
equation, the resulting dose 1s wider than planned




How come?

* Suppose dose should be less than 32, and intake
ranges between 2 and 8

 If we solved for concentration by division, we’d

get a distribution ranging between zero and 16

* But if we put that answer back into the equation
Dose = Concentration x Intake

we’d get a distribution with values as large as
128, which 1s




Backcalculation with p-boxes

Suppose A + B = C, where
A =normal(5, 1)

0" 374 5 6 7 8 0 10 20 30 40 50 60




Getting the answer

* The backcalculation algorithm basically
reverses the forward convolution

* Not hard at all...but a little messy to show

* Any distribution
totally inside B 1s
sure to satisfy the
constraint ... 1t’s
a “kernel”




Check 1t by plugging 1t back in

A+B=C*cC

—

O_
-1




Precise distributions don’t work

Precise distributions can’t express the target

A concentration distribution giving a prescribed
distribution of doses seems to say we want
some doses to be high

Any distribution to the left would be better

A p-box on the dose target expresses this 1dea




Conclusion

* Planning cleanup requires backcalculation

* Monte Carlo methods don’t generally work
except 1n a trial-and-error approach

* Can express the dose target as a p-box




