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Not everything that counts can 
be counted, and not everything 

that can be counted counts.

(attributed to Einstein)



To rephrase Mark Antony, 
``I come to confine standard 

probability, not to condemn it.''



My Debts to My Students
(Comparative Probability)

• Michael Kaplan

• Peter Walley

• Marco Wolfenson

• Anurag Kumar



• Peter Walley

• Anurag Kumar

• Yves-Laurent Grize

• Adrian Papamarcou

• Amir Sadrolhefazi

(Interval-Valued Probability)



(Set-valued Probability)

• Pablo Fierens

• Leandro Rego



The `I’ in SIPTA

• `Imprecise’ is a negative word, suggesting a 
defect as compared to `precise’.

• In fact, SIPTA is the most concerned of the 
statistical societies with matching the 
precision of a mathematical model of 
probability to the accuracy inherent in a 
probability concept.



• If it were just about precision, then even the 
real numbers are imprecise compared to the 
nonstandard reals.

• The true issue is to match precision to the 
accuracy inherent in the concept at hand.

• This is a central concern to SIPTA and our 
focus this afternoon.



• We are motivated by some general views 
about applied mathematics and

• by their specific implications for 
mathematical models of a variety of 
concepts of probability.

Overview



Thoughts on Applied 
Mathematics

• Applied mathematics starts from 
applications and moves to mathematical 
models that are then worked out to provide 
understanding of, and working techniques 
for, these applications.

• A mathematical model lies in a formal 
domain, unlike most applications.

• There is a potentially treacherous shift of 
categories.



• Theory of measurement as developed by 
Suppes, Luce, and others views the 
application as being in an empirical domain 
and the model in a formal or mathematical 
domain.

• Important relations in the empirical domain 
are homomorphically mapped into 
convenient relations in the mathematical 
domain.



• The expressiveness of a model is its ability to 
host relations that preserve the significant 
distinctions in the application domain.  A 
model may be insufficiently expressive and 
unable to host all of the empirical relations.

• We also desire that a model not be so 
expressive that it offers many distinctions 
that point only to phantom distinctions in 
the empirical domain. In such a case, the 
model is excessively expressive.



• We do not wish to be pedantic about this 
rendering.

• Distinctions should be ones of significance.

• Some excess expressiveness will have to be 
tolerated.

• It is not about a glove fitting a hand.



Make everything as simple as 
possible, but not simpler.

(Albert Einstein)



• Nor should the goal be an overarching 
mathematical theory of probability that 
accommodates to all probability concepts.

• Excessive generality comes at the expense of 
saying very little of specific interest.

• We need mathematical theories closely 
attuned to individual probability concepts.



• In engineering and scientific terms, we talk 
about accuracy and precision.

• We might have an ``application’’ or concept 
of, say, `expertise in probability theory’ and 
be able to compare some pairs of individuals 
as to who is more expert than whom.

• We surely have no understanding that 
enables us to meaningfully compare all pairs.

Accuracy and Precision



• If we attach, say, integers to each individual 
to represent expertise, with a larger integer 
representing greater expertise, then we have 
an unrealistic total ordering.

• Furthermore, what are we to make of one 
level of expertise having twice the rating of 
another?

• The precision or expressiveness of the 
representation exceeds the inherent 
accuracy of the expertise concept.



Mathematical Caution

• Mapping a non-formal system into a formal 
system comes at a necessarily significant 
cost in translation

• We are establishing a correspondence 
between different categories of objects

• Mathematics has its roots in empirical 
phenomena but follows its own creative path



John von Neumann

• ...mathematical ideas originate in empirics, 
although the genealogy is sometimes long 
and obscure. But, once they are so 
conceived, the subject begins to live a 
peculiar life of its own and is better 
compared to a creative one, governed by 
almost entirely aesthetical motivations, than 
to anything else and, in particular, to an 
empirical science.



But there is a grave danger that the subject 
will develop along the line of least 

resistance, that the stream, so far from its 
source, will separate into a multitude of 

insignificant branches, and that the 
discipline will become a disorganized mass 
of details and complexities. In other words, 

at a great distance from its empirical 
source, or after much "abstract" 

inbreeding, a mathematical subject is in 
danger of degeneration.



At the inception the style is usually 
classical; when it shows signs of becoming 

baroque, then the danger signal is up.

In any event, whenever this stage is 
reached, the only remedy seems to me to 
be the rejuvenating return to the source: 
the re-injection of more or less directly 
empirical ideas. I am convinced that this 

was a necessary condition to conserve the 
freshness and the vitality of the subject and 

that this will remain equally true in the 
future.



• We will apply the foregoing general 
considerations to a critical examination of 
the suitability of standard probability, that 
due either to Kolmogorov or to de Finetti, 
to a variety of examples of different 
concepts of probability.

• We will find the standard model can be 
either insufficiently or excessively 
expressive.

Focus on Probability



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



Physically-Determined 
Probability

• Probability determined from physical 
properties, not from other probabilities

• Classical probability---approximate 
symmetry, classical mechanics, and sensitive 
dependence on initial conditions

• Statistical mechanics, e.g., Boltzmann’s law

• Quantum mechanics



Quantum 
Mechanics

Max Born’s 1926 interpretation 
of Schrodinger’s wave function as 

yielding a probability density

Randomness in the physical realm 
is inextricably entrenched in QM



Observables and State in QM

• The state space is a closed, infinite-
dimensional Hilbert space.

• Observables correspond to Hermitian 
operators on the state space.

• The state and the operator yield the 
probabilities for possible measurements.

• Observation of events corresponds to 
closed linear subspaces of the Hilbert space.



Heisenberg’s Uncertainty Relation

• If ÂB̂ != B̂Â, then the op-
erators do not commute.

•Observables corresponding
to non-commuting opera-
tors are not simultaneously
measurable. The order of
measurement matters.

•While we can measure each
of A and B arbitrarily ac-
curately, we cannot do so
for both A and B.

•There is an irreducible min-
imum to the product of the
variances of the two mea-
surements.

•Boolean event logic fails and
the event collection is a non-
Boolean lattice.



Failure of Modularity

• If Â and B̂ do not commute
and Aa and Bb are sets of
possible measured values,
then

P(Aa∪Bb) "= P(Aa)+P(Bb)−P(Aa∩Bb).

•Hence, the Kolmogorov for-
mulation of standard prob-
ability is inapplicable to quan-
tum mechanics.

•This is a failure of the ex-
pressivity of standard prob-
ability.



Failure of Expressiveness of Standard 
Probability in QM

• The order of observation of canonically 
conjugate observables affects the state.

• The collection of observable events is non-
Boolean.

• Distributivity of union and intersection fails.

• A consequent failure is that QM probability 
does not obey the formula for the 
probability of a non-disjoint union of two 
events.



Physicists & Finite Frequencies

• Physicists interpret the theory-determined 
probabilities and expected values produced 
by QM through sample averages of finitely 
many repeated, unlinked experiments.

• They are satisfied with the variance of such 
estimates converging to zero at rate 1/n.



Propensity Interpretation

• QM probability, applying as it does to the 
single case, is more understandable as a  
Popperian propensity.

• On the propensity account we can make 
sense of probability for a single experimental 
outcome as computed by QM.

• The display of propensity returns us to finite 
relative frequency.



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



• For relative frequency r_n(A) based on 
observations, a change of 1/n suffices to 
render distinguishable relative frequencies. 
Precision of relative frequency is to within  
1/n changes.

• However, the relative frequency is intended 
as an estimator of P(A) and the accuracy is 
only order of square-root of n.

Finite Relative Frequency



Accuracy

•Hoeffding’s and Chebychev’s
inequalities demonstrate that
accuracy is only to within√

c/n.
•To match precision to ac-
curacy, introduce the fam-
ily of intervals

Ik = [kε, (k+3)ε] for k = 0, . . . ,
1

ε
−2.

•For simplicity, we ignore “end
effects” at the boundaries
of the unit interval [0, 1].

•Map a relative frequency

rn(A)→ Iρ,

where (ρ + 1)ε ≤ rn(A) ≤ (ρ + 2)ε.

1



• It follows that

|rn(A)−P(A)| ≤ ε

⇐⇒ rn(A)−ε ≤ P(A) ≤ rn(A)+ε

⇒ P(A) ∈ Iρ.

• Letting ε =
√

c/n,

1− 2e−c ≤ P(|rn(A)−P(A)| ≤
√

c/n)

≤ P(P(A) ∈ Iρ).

• Values of relative frequen-
cies that share the same subin-
tervals of width

√
c/n can

nearly equally accurately es-
timate the unknown P(A)
in the sense provided by
confidence intervals.



•This establishes that we have
matched the precision of our
measurement of relative fre-
quencies to the accuracy of
our resulting inference about
the probability of an event.

•While there are n+1 possi-
ble different values of rn(A),
there are no more than

√
n/c

distinct subintervals quan-
tizing these relative frequency
values.



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



John Venn on the Long Run

• ...view of Probability 
adopted in this 
Essay. ...which regards it 
as taking cognisance of 
laws of things and not of 
the laws of our own 
minds in thinking about 
things, 



• ...That the science of Probability, on this view 
of it, contains something more important 
than the results of a system of mathematical 
assumptions, is obvious. 

• ...the fundamental conception which the 
reader has to fix in his mind as clearly as 
possible, is,...a series of a peculiar kind, one 
of which no better compendious description 
can be given than that which is contained in 
the statement that it combines individual 
irregularity with aggregate regularity.  This is 
a statement which will probably need some 
explanation.



• So in Probability; that uniformity which is 
found in the long run, and which presents so 
great a contrast to the individual disorder, 
though durable is not everlasting. Keep on 
watching it long enough, and it will be found 
almost invariably to fluctuate, and in time 
may prove as utterly irreducible to rule, and 
therefore as incapable of prediction, as the 
individual cases themselves.

• ---a few instances are not sufficient to 
display a law at all; a considerable number 
will suffice to display it; but it takes a very 
great number to establish that a change is 
taking place in the law.



Frequentist Comparative Probability

• Can the regularities in somewhat unstable 
long-run relative frequencies be modeled by 
comparative probability (CP) orders?

• Might the reduced precision of CP orders 
better match the reduced accuracy of 
unstable frequentist sources?

• Are there CP orders with no relation to 
standard probability?



CP Axioms

•A ! B is read “A is at least
as probable as B”

• de Finetti axiomatized CP
on an algebra A of subsets
of Ω

•CP1.(order) ! is a total on
order on A.

•CP2.(nontrivial) Ω ! ∅.
•CP3.(positive) (∀A ∈ A) A !
∅.

•CP4.(cancellation)

A ! B ⇐⇒ A−B ! B−A.

Implications include:

(a) A ⊃ B⇒ A ! B;

(b) A ! B ⇐⇒ Bc ! Ac;

(c) A ! B,C ! D,A⊥C⇒ A ∪C ! B ∪D.



CP Orders and Probability

•The CP order ! is additive
if there exists a probability
measure P (generally, not
unique) and

A ! B ⇐⇒ P(A) ≥ P(B).

•! is almost additive if there
exists P and

A ! B⇒ P(A) ≥ P(B).

•! is weakly additive if there
exists P and

P(A) ≥ P(B)⇒ A ! B.

•! is (strictly) nonadditive
if none of the above hold.



•CP-based conditions deter-
mining additivity, almost ad-
ditivity, and nonadditivity
were developed by Michael
Kaplan.

•The additive CP orders are
the only ones that admit
of a joint order of indepen-
dent type for any number
of repetitions of a given CP
order.

•These conditions underline
the nontriviality of assum-
ing the existence of joint
experiments—in this case,
of joint CP orders.



Partial CP Orders

•For convenience, we assume
antisymmetric CP orders (no
equivalent distinct events).

•A partial CP order is tran-
sitive, irreflexive, and sat-
isfies CP2, CP3, CP4, and
consequence (a) of mono-
tonicity with respect to set
inclusion.



Finite Frequentist CP

•Choose a minimal sample
size n0.

•As a first of four alterna-
tives, define

A !1 B

⇐⇒ (∀n0 ≤ j ≤ n) rj(A) > rj(B).

•We do not require “con-
vergence” of relative frequen-
cies.

• If the relative frequencies
are converging to a mea-
sure P , then the CP order
will have an agreeing rep-
resentation

A !1 B ⇐⇒ P(A) > P(B).



•There exists frequentist long
run data for which !1 is
only a partial order.



•For the remaining alterna-
tives, define

P(A) = min
n0≤j≤n

rj(A) and

A "2 B ⇐⇒ P(A) > P(B).

P̄(A) = max
n0≤j≤n

rj(A) and

A "3 B ⇐⇒ P̄(A) > P̄(B).

A "4 B ⇐⇒ P(A) > P̄(B).
• In the absence of equiva-
lences, "2,"3 are total or-
ders. However, these or-
ders need not satisfy CP4
nor the consequence (b) of
complementation reversing
ordering.



•!4 is typically only a par-
tial order.

•!4 satisfies the complemen-
tation consequence (b)

•When !4 is a total order,
then it is additive.

•!2,!3 can be nonadditive
CP orders.

• In this case, additive nu-
merical probability is insuf-
ficiently expressive.

•When any of these order-
ings are additive, then nu-
merical probability is ex-
cessively expressive as there
need not be a unique rep-
resentation.



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative 
frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



• Mises postulated convergence of frequencies 
in his collective as necessary to a physically 
meaningful account of probability.

• He also imposed a randomness condition of 
invariance under ``place selection’’.

• The assumption of convergence in the long 
run is a claim about the world that can never 
be verified or contradicted.

Asymptotics: Laws of Large 
Numbers



• ``The essentially new idea...was to consider 
probability as a science of the same order as 
geometry or theoretical mechanics...’’

• ``...probability theory deals with mass 
phenomena and repetitive events.’’



• Jeffrey rebuts Mises by likening Mises limit of 
the hypothetical convergent infinite 
sequence to a measurement of the mass of 
an hypothetical tenth planet.

• Not only are the sequences hypothetical, but 
so is their postulated limit.



The Anthropic Principle

• A possible argument for approximate long-
run stability. 

• The eminent physicist Steven Weinberg 
defines this controversial notion as follows.

• ``Briefly stated, the anthropic principle has it 
that the world is the way it is, at least in 
part, because otherwise there would be no 
one to ask why it is the way it is. There are a 
number of different versions of this 
principle...’’



• Can we use the anthropic principle in the 
form of a universal conditioning event U?

• This event is not a true event to which we 
can assign probability.

• It suggests that the long run phenomena of 
interest to us are likely ones we have co-
existed with. They will have some form of 
long-range approximately stable behavior.

• A ``fact’’ that philosophy cannot justify.



LLNs without Convergence

• As observed by Venn and Jeffrey, the 
assumption of convergence in the long run is 
metaphysics and not even a plausible 
hypothesis.

• Accepting the hypothetical long-run 
frequentist data, we eliminate the 
assumption of a limiting relative frequency 
for P(A).



Lower and Upper Probability

•Let rn(A) denote the rela-
tive frequency with which
event A is observed in the
outcomes xn of the first n
repeated experiments.

•As in the discussion of the
long run, define lower prob-
ability P and upper prob-
ability P̄ through

P(A) = lim inf
n→∞

rn(A)

P̄(A) = lim sup
n→∞

rn(A).

•P and P̄ will exist for all
possible (hypothetical) se-
quences of outcomes x∞.



•The following are proper-
ties of lower and upper prob-
ability:

(a) 1 ≥ P̄(A) ≥ P(A) ≥ 0;

(b) P̄(Ac) = 1−P(A);

(c) A ⊃ B⇒ P(A) ≥ P(B)

and P̄(A) ≥ P̄(B)

(d) (∀A ⊥ B) P(A ∪B) ≥ P(A) + P(B)

(e) P̄(A ∪B) ≤ P̄(A) + P̄(B).



•Walley and Fine showed that
P is the lower envelope of
the class Mx∞ of all lim-
its of pointwise convergent
subsequences of relative fre-
quencies of events calculated
along the given sequence x∞:

P(A) = inf{µ(A) : µ ∈Mx∞}
P̄(A) = sup{µ(A) : µ ∈Mx∞}.
• In addition, the class of P
generated as above as we
range over all possible x∞

is precisely the class of all
lower envelopes on the given
event algebra A.



•When the relative frequen-
cies converge then

P(A) = P̄(A) = P(A) = lim
n→∞

rn(A).

•The room for difference is
found in how we deal with
the infinite data sequence
x∞ when relative frequen-
cies do not converge.

•We can use this data in all
circumstances by keeping
track of the structure of per-
sistent fluctuations and not
just the terminal value of
relative frequency.



Sets of Measures

• If there is a known or learnable time 
variation in choice of measures on each 
trial, then you would not follow our 
suggestions.

• Fine, Fierens, Rego have introduced a ``sets 
of measures’’ model that allows for a fairly 
arbitrary choice of measure on each trial.

• Results obtained include conditions under 
which the set of measures being used can be 
estimated reliably from long finite data 
sequences.



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



Stationary Random Sequences

• Kumar, Grize, Papamarcou, and Sadrolhefazi 
developed lower and upper probability 
models for stationary random sequences of 
bounded random variables.

• The lower probability function is time shift 
invariant and therefore stationary.

• It is also monotonely continuous along 
convergent sequences of cylinder sets, the 
observable events.



• Particular attention was paid to the event of 
convergence of relative frequencies in this 
model.

• The stationarity convergence theorem of 
standard probability asserts that every 
stationary random process of bounded 
random variables has time averages that 
converge almost surely (possibly to a non-
degenerate random variable).



• The goal was to show that this was not 
necessarily true of lower probability models.

• That this was indeed the case demonstrated 
that the imposition of convergence in all 
cases by standard probability was too 
restrictive.

• In this sense, standard probability is 
insufficiently expressive and forces an 
unwarranted metaphysical commitment.



LP Models Vacuous on Tail Events
•Let S denote the set of lower
probabilities that are sta-
tionary and monotonely con-
tinuous along C.

•A lower probability P is vac-
uous on A if P (A) = 0, P̄ (A) =
1.

•A theorem (5.8) by Sadrol-
hefazi asserts that given any
lower probability P 0 ∈ S
and an integer n ≥ 1 and
0 < ε < 1, there exists P 1 ∈
S that is vacuous for all events
in the tail algebra T and
satisfies

(∀C ∈ Dn) |P 1(C)− P 0(C)| ≤ ε,

and |P̄1(C)− P̄0(C)| ≤ ε.



•Given any lower probabil-
ity P 0 that is stationary and
monotonely continuous on
the cylinder sets, there ex-
ists a lower probability P 1
that agrees with it, within
any positive specified ε, on
cylinder sets of span no more
than n, yet P 1 is vacuous
or maximally noncommital
on all tail events including
those concerning convergence
of time averages.

• P 0 can be a standard sta-
tionary probability measure.



•Lower probability allows us
to avoid assertions about
what is, in principle, unob-
servable, while at the same
time being able to mimic
any other stationary and mono-
tonely continuous lower prob-
ability on the fundamentally
observable class of cylinder
sets.

• Standard probability does
not have this desirable op-
tion and must make spe-
cific commitments to un-
observable events.



Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences

• Epistemic probability for inductive support.

• Subjective probability.



• Kyburg and Levi are well-known for their 
efforts to develop theories of inductive 
support. 

• They both rely on upper and lower 
probabilities to reflect their understanding 
that epistemic probability need not be as 
precisely defined as standard probability.

• We believe that uppers and lowers are too 
precise.

Inductive Support: Epistemic 
Probability



• Start with information expressed in a 
possibly natural language  L. 

• Translate or encode evidence and hypothesis 
statements in L into a formal language.

•  Evidence is postulated to be known.

• An hypothesis is a statement of interest that 
we wish to partially justify on the basis of 
the evidence.



• Induction requires us to determine some 
form of expression of this justification or of 
the support lent by evidence to an 
hypothesis.

• Expressions of inductive support need not 
be part of our formal language.



• We hold that standard probability and upper 
and lower probability  are too expressive to 
model inductive support.

• We seek instead a partial ordering of the 
support  h|e  lent to h by e.

• We follow the lines of algorithmic or 
Kolmogorov complexity.

• Our account is a highly tentative one!



• Our syntax is that of finite-length strings 
from a finite alphabet (that can be taken to 
be binary).

• This syntax permits concatenation of strings 
to form new strings.

• There is no Boolean logic associated with 
our syntax.

Syntax



• Strings are encodings or translations of 
expressions in another language L.

• L has a semantics perhaps including objective 
data, such as relative frequencies in Kyburg’s 
epistemological probability.

• The semantic relations of L are no longer 
accessible to us.

Semantics



• In the absence of an appropriate semantics, 
we cannot identify truth-preserving 
operations such as the usual rules of 
deductive logic. 

• Our semantics is based instead upon the 
evaluation of a string p as producing another 
string q through a selected universal Turing 
machine (UTM) computation                      
T(p)=q.



• The choice of encoding and UTM seem 
arbitrary.

• We desire our eventual measures of support 
to be robust with respect to computable 
choices of translations from L and choices of 
the evaluation mechanism T.



• A string p is an explanation of a string q if     
T(p)=q

• Given any evidence string e and hypothesis 
string h, there exist infinitely many strings p 
such that                                                  
h=T(pe)

• This is a consequence of T being a UTM.

Explanations



The Explanatory Support Set

• The explanatory support set P(h|e) is the 
set of all supplements p to the evidence e 
such that their concatenation is an 
explanation for h:  T(pe)=h.

• Use of P(h|e) follows the Epicurean 
prescription of keeping all arguments in 
favor of a conclusion, not just the ``best’’ 
one.



• While P is an infinite set, we plausibly make 
it finite by limiting it to supplementary 
explanations p that are not much longer 
than those needed to generate h while 
ignoring the evidence e.

• More precisely, for a UTM  T, there is a 
constant c such that for any evidence e and 
any h there exists a string h*, a function only 
of h, whose length   |h^*|<c+|h|+2log(|h|),  
and  T(h*e)=h.

• We omit supplementary explanations that 
are longer than a direct description.



• Motivated by Keynes, we compare the 
inductive support h|e, lent to h by e, with h’|
e’, lent to h’ by e’.

• Given our minimal semantics and syntax, we 
ignore the ``content’’ of the strings and 
focus only on the lengths of strings in P(h|e) 
and  P(h’|e’).

Comparing P(h|e) to P(h’|e’)



Summarizing an Explanatory Support Set

• Introduce the unnormalized
cumulative distribution func-
tion

Fh|e(z) = ‖{|p| : p ∈ P(h|e) and |p| ≤ z}‖.
•The function Fh|e contains
all the information relevant
to induction.

1



• Fh|e(z) is nondecreasing in
z, is zero for negative z and
reaches a maximum for z ≥
|h∗|.

• Fh|e(z) is the number of ex-
planations for h given e that
have lengths no greater than
z.

• A comparison of the induc-
tive supports h|e and h′|e′
is then a comparison be-
tween the two correspond-
ing cumulative distribution
functions Fh1|e1

, Fh2|e2
.



Partially Ordering Inductive Support

•Occam’s Razor suggests fa-
voring shorter strings over
longer ones as explanations.

•We recall the idea of sto-
chastic dominance X ! Y
of the random variable Y
by the random variable X
that is determined by their
corresponding (normalized)
cdfs through

X ! Y ⇐⇒ (∀z ∈ R) FX(z) ≤ FY(z).

•The binary relation ! is tran-
sitive but provides only a
partial ordering between pairs
of random variables.



•Partially order pairs hi|ei
through

h1|e1 !τ h2|e2

⇐⇒ (∀τ ≤ z ≤ min(|h∗1|, |h
∗
2|)

Fh1|e1
(z) ≤ Fh2|e2

(z).

• It is evident that the par-
tial ordering between pairs
{hi|ei} is not one induced
by some conditional prob-
ability P(hi|ei).

• Such a conditional proba-
bility would induce a total
ordering.



•The expressiveness of !τ as
a representation of strength
of inductive support, is far
short of that of a numeri-
cal representation.

•However, remarks by Keynes
and difficulties encountered
by others suggest that this
might be a step in the right
direction.

•There is little a priori or
intuitive reason to think that
inductive support can be
identified between any pair
of hypotheses given their
individual supporting evi-
dence.



Robustness
•Given the arbitrariness of
translation of a statement
s ∈ L in our base language
into our syntax via an en-
coding E, and the arbitrari-
ness in our choice of seman-
tics through a choice of UTM
T, we need to examine how
robust the comparisons are
to specific encodings of what-
ever our original informa-
tion might be into our string
syntax and to changes of
UTM.

•This is a work in progress.
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Illustrative Probability Concepts

• Physically-determined probability in quantum 
mechanics.

• The accuracy of finite relative frequency.

• Relative frequency and CP in the long run.

• Asymptotics and LLNs for relative frequency.

• Stationary random sequences.

• Epistemic probability for inductive support.

• Subjective probability.



Subjective Probability

• There is no doubt that reasoning about 
uncertainty is an activity critical to our 
survival and well-being.

• And this includes its importance to much of 
the animal kingdom as well.

• Such skills are critical to the survival of 
individuals and of species.



• There is also no doubt that none of this 
reasoning relies upon mathematics---unless 
you want to give mice a lot of credit. 

• Subjective probability is in peril when it 
addresses individual decision-making under 
uncertainty without serious reference to the 
actual mental capacities of individuals.

• At an extreme, we can ask for clairvoyance.



• Perhaps mathematics can assist us and free 
us from forms of error---from the 
`paradoxes’ of decision theory.

• However, I doubt that this mathematics is 
that of standard or finitely additive 
probability.



• Coherence or Dutch book arguments that 
force numerical probability are compelling 
only in contrived circumstances. 

• Such arguments invariably require you to 
extend your preferences from the gambles 
you care about to a full set of combinations 
you had no need to consider.



• There is a need for far more insight obtained 
by psychologists into how we reason, largely 
unconsciously, about situations of risk and 
opportunity when chance plays a role.

• We have prematurely adopted mathematical 
models before we understood sufficiently 
what it was we were modeling.



• The lack of sufficient understanding of 
reasoning under uncertainty has licensed a 
reign governed by mathematical taste and 
convenience. 

• The company of mathematics is seductive to 
the adept, as von Neumann warned us.



• My doubts extend as well to upper and 
lower previsions---to buying and selling 
prices offered to all comers in all 
combinations.

• Having said this, I also think that Walley’s 
Statistical Reasoning with Imprecise Probability 
is a masterpiece and one of the most 
important and innovative treatments of 
statistical thinking of the past thirty years.



In Summation

• Applications, and their thoughtful 
consideration, come first!

• They are the source of a number of well-
entrenched distinct concepts of 
``probability’’ for random, chance, and 
uncertain phenomena that are still evolving.

• It is essential to match model precision to 
the inherent accuracy of the concept.



• Moving from either the natural or subjective 
worlds into the formal mathematical world 
perforce requires some degree of distortion.

• Mathematics can produce invaluable 
development of our conceptual 
understanding.

• However, mathematics has its own dynamic 
which can (mis)lead us far from our entry 
point.



• Thus arise issues of precision/imprecision, 
accuracy, or of expressiveness:

• issues of how faithfully will selected models 
represent key aspects of probability in its 
natural and subjective realms;

• and of the extent to which these models 
introduce misleading distinctions pointing to 
non-existent real-world phenomena.



• We have focussed on the expressiveness 
failures of standard mathematical probability.

• These failures were identified in quantum 
mechanics, in the use of finite relative 
frequencies, moderately unstable frequentist 
data, laws of large numbers, stationary 
processes, and in a basic look at inductive 
support.



Availability of the Slides

• If you send a request to me at                       
tlfine@ece.cornell.edu                                 
I will send you a copy of the slides for this 
talk together with a number of references.

mailto:tlfine@ece.cornell.edu
mailto:tlfine@ece.cornell.edu


• Again,  I regret not being able to join you in 
person for the full round of professional and 
personal interactions that make ISIPTA 
meetings so valuable.

• My thanks to the Steering Committee for 
proposing and making this `high tech’ talk 
possible,

• and I particularly thank our host Jirina who 
patiently arranged all this!

Thanks!





• Boltzmann was the first to 
express a physical law in terms 
of probabilities

• Maxwell-Boltzmann statistics 
for classical particles



•Let F denote an external
force acting on the parti-
cles (e.g., gravity).

•Let m be the common mass
of an individual particle.

•The density f satisfies Boltz-
mann’s collisionless equa-
tion

∂f

∂t
+

p

m

∂f

∂x
+ F

∂f

∂p
= 0.



My General Intellectual Debts

• Andrei Kolmogorov for standard probability 
and the complexity approach

• Jimmie Savage for his deep insight into 
personalist probability and wide-ranging 
scholarship

• Glen Shafer for ``A Mathematical Theory of 
Evidence’’ and ongoing critical and creative 
historical studies

• Patrick Suppes for measurement theory and 
for bringing to bear a deep understanding of 
logic and philosophy of science on a very 
wide range of inquiry 



• Henry Kyburg and Isaac Levi for 
conversations and their sustained 
examination of epistemic/epistemological 
probability using upper and lower probability

• Peter Walley for ``Statistical Reasoning...’’ 
and some years of collaborations.

• Ming Li and Paul Vitanyi for ``Kolmogorov 
Complexity Theory’’



Hoeffding Bound
•Let Xi be the {0, 1}-valued
random variable that is 1 if
A occurs and 0 otherwise.

•The finite relative frequency
estimator is defined by

rn(A) =
1

n

n∑

i=1

Xi.

•The Hoeffding inequality pro-
vides us with a confidence
interval [rn(A)−ε, rn(A)+ε]
that, in advance of being
observed, will contain the
unknown P(A) with prob-
ability at least

P(rn(A) + ε ≥ P(A) ≥ rn(A)− ε)

≥ 1− 2e−nε2.

1



•As with all confidence in-
tervals, this is a claim made
about the unknown P (A) in
advance of measuring or ob-
serving rn(A).

•Once we have observed rn(A),
the case of real interest, we
can no longer make this claim.

•We can rewrite the bound
as

P

(
rn(A) +

c√
n
≥ P(A) ≥ rn(A)− c√

n

)

≥ 1− 2e−c.



Expressiveness of U/L Probability

•We can use P and P̄ to de-
fine a variety of CP rela-
tions, exactly as was done
in the long run case.

• Standard probability P is
insufficiently expressive in
that it cannot accommodate
to the case of asymptoti-
cally divergent relative fre-
quencies, except by mak-
ing a model for how these
relative frequencies change.



Relation to Comparative Probability
•With this class of lower en-
velopes we can describe all
possible comparative prob-
ability (CP) orders satisfy-
ing de Finetti’s axioms.

•For all finite A and ! a CP
order relation there exists
x∞ such that P as defined
through the limit inferior
along this sequence repre-
sents this order through

(∀A, B ∈ A) A ! B ⇐⇒ P(A) ≥ P(B).

•All CP orders can now be
inferred from data that is
an infinite sequences of out-
comes of repeated random
experiments.



•Of course, in practice we
will only observe a finite
length data sequence.

•Walley and Fine used such
sequences to estimate the
unobtainable limiting ver-
sions.



•Of course, if the variations
in relative frequency have
a knowable structure, then
one would use this struc-
ture.

•Use of possible structure is
emphasized in a related ap-
proach of Cozman and Chris-
man focusing on subsequences
of x∞.

•They consider the set of lim-
iting relative frequencies of
infinite subsequences of the
data sequence x∞.

•Walley and Fine emphasize
the subsequences of rela-
tive frequencies calculated
along all of x∞.


