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GENERALIZED INFORMATION THEORY (GIT)

* GIT is a research program whose objective is to develop a
formal treatment of the interrelated concepts of uncertainty
and information in all their varieties; it is a generalization of
two distinct branches of classical information theory, which
are based, respectively, on the notions of possibility (crisp)

and probability.

e In GIT, as in classical information theory, uncertainty
(predictive, retrodictive, diagnostic, prescriptive, etc.) is
viewed as a manifestation of some information deficiency,
while information is viewed as the capacity to reduce
uncertainty. That is, GIT deals with information-based

uncertainty and uncertainty-based information.

e The aims of GIT were introduced in 1991 in my paper
“Generalized Information Theory” [Fuzzy Sets and Systems,
40(1), pp. 127-142].

e Comprehensive and up-to date coverage of results obtained
by research within GIT is contained in the text Uncertainty
and Information [John Wiley, Hoboken, NJ, 2006].
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The amount of information obtained by an action

The amount of uncertainty reduced by the action



The mathematical theory of information
had come into being when it was realized
that the flow of information can be
represented numerically in the same way
as distance, mass, temperature, etc.

(Alfréd Rényi)
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MONOTONE MEASURES

Given a universal set X and a non-empty family C of subsets
of X (usually with an appropriate algebraic structure),

a monotone measure (also called a fuzzy measure), L,

on (X, C) is a function

H: C—> [0,

that satisfies the following requirements:
(1) p (D) = 0 (vanishing at the empty seft);
(2) for all A,B € C,if A c B, then u(A) <u(B)
(monotonicity);

(3) for any increasing sequence A; € A, C ... of sets in C,
if | JA, €c,thenlimp(A;) = ;{UAJ
i=1 i—w =1

(continuity from below);
(4) for any decreasing sequence A; D A; D ... of sets in C,
if (|A; € c,thenlimp(A,) = p(ﬂAiJ
i—0 i=1

i=1

(continuity from above).



FUZZY SETS: Basic Characteristics

Sets whose boundaries are not sharp.

Sets that allow to distinguish degrees (or grades)
of membership.

Sets that are fully characterized by membership
functions of the form F: D — R.

Distinct categories of fuzzy sets are distinguished
by distinct types of sets D (domains) and R
(ranges) that are employed in defining their
membership functions.

For each x € D, F(x) is viewed as the degree of
membership of object x in fuzzy set F.

F(x) may also be interpreted as the degree of
compatibility of object x with a given concept
represented by fuzzy set F.

Membership functions of standard fuzzy sets
have the form F: X — [0, 1], where X is a
classical (crisp) set (universal set) whose elements
are not fuzzy sets.




oi-Cuts of Standard Fuzzy Sets

e For each o € [0,1], the set °A = {x € X |A(x) > a1}
is called an a-cut of standard fuzzy set A whose
membership function has the form A: X — [0,1].

e Any standard fuzzy set is uniquely represented
by its a-cuts for all o € [0,1].

e Properties of classical sets can be extended to
fuzzy sets (fuzzified) by requiring that they be
preserved in all a-cuts. This kind of fuzzification
is called a cutworthy fuzzification.
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DIVERSITY AND UNITY OF UNCERTAINTY
THEORIES

¢ It is significant that the enormous and ever increasing
diversity of uncertainty theories subsumed under GIT is
balanced by some common features they share.

¢ The diversity of uncertainty theories is in some sense
desirable. It enables us to focus on the development of
those theories that are promising from the standpoint of
various applications. However, it makes it increasingly
more difficult to get oriented within the many existing or
emerging theories and the many prospective theories.

¢ It turns out that all recognizable uncertainty theories in
GIT can be classified in a useful way so that some
properties of the theories are invariant within each class.
This unity of uncertainty within each class allows us to
work within the class as a whole.

¢ A significant class of uncertainty theory with common
properties consists of the various theories of imprecise
probabilities defined on finite classical sets.



THEORIES OF UNCERTAINTY

In order to develop a fully operational theory, T, for dealing with
uncertainty of some conceived type requires that a host of issues be
addressed at the following four levels:

¢ LEVEL 1 --- we need to find an appropriate mathematical
representation of the conceived type of uncertainty, which is
achieved by characterizing, via appropriate axioms, a class of

uncertainty functions, say functions u, that represent uncertainty
in theory T.

¢ LEVEL 2 --- we need to develop operating rules (calculus) for
manipulating the uncertainty functions u in theory T.

¢ LEVEL 3 --- we need to find a meaningful way of measuring the
amount of relevant uncertainty in any situation formalizable in
theory T, which is achieved by finding a justifiable functional, U,
which for each uncertainty function u in theory T measures the
amount of uncertainty associated with it.

¢ LEVEL 4 --- we need to develop methodological aspects of theory
T by utilizing functional U as an abstract measuring instrument.
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CHOQUET CAPACITIES OF ORDER k
(k=2,3,...,00)

Alternative name: k-monotone measures (k = 2).

2-monotone measures are defined for all pairs

A, B of subsets of X by the inequality:

WAUB) 2 (A) + W(B) — L(ANB).
3-monotone measures are defined for all triples
A, B, C of subsets of X by the inequality

WAUBUC) 2 W(A) + 1(B) + 1(C)

— WANB) - L(ANC) —(BNC)
+ u(AthC)

k-monotone measures are defined for all

families of k subsets of X by the inequality

) 4, Nz (- 1)|K|+1ﬂ( N 4))
i=1 KCN
K+D

1-monotone measures is a convenient name for

superadditive'measures that satisfy for all
disjoint pairs of subsets A and B of X the inequality

M(A U B) 2 i(A) + u(B).



IMPRECISE PROBABILITIES: Canonical
Representations

1. Lower probability function: p.
2. Upper probability function: p’
3. Mobius functions: m

4. Convex set of probability distributions: D

CONVERSIONS
e 1 & 2: duality equation
¢ 1 & 3: Mobius transform

e 1= 4: constructing extreme points of D

o 4= 1: (A) = inf p{X,c, p(¥)}, VA



LOWER AND UPPER PROBABILITY
MEASURES ASSOCIATED WITH A CONVEX
SET OF PROBABILITY DISTRIBUTIONS D on X

Notation: "L. denotes the lower probability measure
associated with D

U denotes the upper probability measure
associated with D

Basic formulas:
"W.(A) = inf,.5{Z, ,pX)}, VA

Du*(A) = Suppe D{er AP(X)}, VA

Duality of "u. and "u":

"U(A) =1 -"p.(A), VA



CONVEX SET OF PROBABILITY DISTRIBUTIONS
ASSOCIATED WITH A GIVEN LOWER PROBABILITY
MEASURE

e Let X = {x,, x,, ..., X,} and let 6 = (6(x,), O(X,), ..., 6(X,))

denote a permutation by which elements of X are
reordered.

* Given any lower probability measure [L. on the power set
of X that is 2-monotone, the convex set of all probability
distributions that dominate this measure, D(lL.), is

determined by its extreme points, which are probability
distributions p, computed as follows:

Ps(0(xy)) = L({0(x))}),
Ps(0(xy) = L({0(xy), O(x,)}) — L({O(x))}),
Po(0(X,1) = L({0(Xy), - ,O(X,1)}) — R({O(X))s oo ,O(X,2)})
Ps(0(x,)) = L({0(Xy), «.. ,O(X,)}) — Ll{O(Xy)s ooe ,O(X,-1)})

e Each permutation defines an extreme point of D(L.), but
different permutations can give rise to the same point.

e D(U.) is the convex hull of the extreme points.



MOBIUS REPRESENTATION OF LOWER
PROBABILITIES

e Given any lower probability p on P(X) its

Mobius representation, m, is obtained for all A €
P(X) via the formula (Mobius transform)

mA)= ¥ (D" u().

B/BcA

e It is guaranteed that m(<J) = 0 and

> m(A) =1.

AeP(X)

e The inverse transform is given for all A € P(X)
by the formula

M(A)= Tm(B).

BBcA



UNCERTAINTY MEASURES: Key Requirements

.Subadditivity: The amount of uncertainty in a joint
representation of evidence cannot be greater than the sum of the
amounts of uncertainty in the associated marginal
representations of uncertainty.

. Additivity: The two amounts of uncertainty considered under
subadditivity become equal when the marginal representations of
evidence are noninteractive according to the rules of the
uncertainty calculus involved.

. Range: The range of uncertainty is [0, M], where 0 must be
assigned to the unique uncertainty function that describes full
certainty and M depends on the cardinality of the universal set
involved and on the chosen unit of measurement.

. Continuity: Any measure of uncertainty must be continuous.

. Expansibility: Expanding the universal set by alternatives that
are not supported by evidence must not affect the amount of
uncertainty.

. Branching/Consistency: When uncertainty can be computed in
several distinct ways, each conforming to the calculus of the
theory, the results must be the same (consistent).

. Monotonicity: When evidence can be ordered in the theory, the
measure of uncertainty must preserve this ordering.

. Coordinate invariance: When evidence is expressed within some
Euclidean space, uncertainty must not change under isometric
transformation of coordinates.



HARTLEY MEASURE OF UNCERTAINTY
H(A) = log, |A|

. Among a given universal set X of all considered
alternatives (predictions, retrodictions, diagnoses,
etc.), only alternatives in set A ¢ X are possible
according to given evidence.

. That is, alternatives in the complement of A are
not possible according to given evidence.

. 0<H(A) £log, [X|

. H(A) measures the degree of nonspecificity (or
imprecision).

. H(A) has been extended to fuzzy sets A via their
o-cut representations by the formula

H(A) =, o.1710g; [*A] do.

e o-cut of fuzzy set A: A = {x € X | A(x) 2 a}.



HARTLEY MEASURES ON XxY

Basic Types

e H(XXY) — joint

e H(X), H(Y) — marginal (or simple)

e H(X]Y), H(Y|X) — conditional

e T,(X,Y) — information transmission

Basic Equations and Inequalities

e H(X|Y) = H(XXY) — H(Y)

e H(Y|X) = H(XXY) — H(X)

o T,(X,Y) = H(X) + H(Y) - H(XXY)
o H(XXY) < H(X) + H(Y)

e H(X|Y) < H(X) and H(Y|X) < H(Y)

Additivity under Independence
e H(XXY) = H(X) + H(Y)
e H(X|Y) = H(X) and H(Y|X) = H(Y)
e T,(X,Y)=0



SHANNON ENTROPY

S(p(x)[xe X) = =X . x p(x)log,p(x)
= =2 ex P®log,[1 -3 . p(y)]

Con(x) = 2,.p(y) € [0, 1] for each x € X expresses
the total conflict (aggregated) between the evidential
claim focusing on x and all the other evidential
claims expressed by the probability distribution

(p(x)|xe X).

Function —log,[1 — Con(x)] is monotone increasing
with Con(x) and extend the range of Con(x) from [0,
1] to [0, ==). Hence, it also expresses the total conflict
within any given probability distribution (p(x)|xe X),
but in a different scale from Con(x).

This alternative representation of the total conflict is
needed to satisfy the additivity requirement of
uncertainty measures.

Shannon entropy can thus be viewed as a measure of
the total conflict among evidential claims associated
with a probability distribution.



JOINT, MARGINAL, AND CONDITIONAL
UNCERTAINTIES: Basic Formulas

UX|Y) = UX.Y) - UCY)
U(YIX) = UCX.Y) - UX)
U(X, Xa,+, X)) = U(X)) + U(X3[X))
+ UX;|X1,X3) + -+ U(Xq| X1, X2, Xie1)

UX]Y) < U(X) The equalities are obtained
U(Y[X) < U(Y) only in the case of
U(X,Y) < UX) + U(Y) noninteraction.

Information transmission:
T(X, Y)=UX) + U(Y) - UX,Y)
T(X, Y) =U(X) - UX]Y)
T(X, Y)=U(Y) - U(Y|X)



HARTLEY-LIKE MEASURE IN
n-DIMENSIONAL EUCLIDEAN SPACE

HL(A)= Igirn{logz [H [1+ p(A;)] + u(A) - ﬁﬂ(Ai. )]}



HARTLEY-LIKE MEASURE

n=1

HL(A) =log,[1 + W(A)]

n=72

HL(A) = min,_log,[1 + WA, ) + L(A,) + W(A)]



GENERALIZED HARTLEY MEASURE IN DST

GH(m) = X,.r m(A) log, |A]

Conditional forms:

GH(X]Y) = GH(X,Y) — GH(Y)
GH(Y[X) = GH(X,Y) - GH(X)



Measures of Uncertainty on Finite Sets X

Hartley measure of nonspecificity in classical possibility
theory:

H(A) =log,|Al, A c X.

Shannon measure (entropy) of conflict in classical
probability theory:

S(p(x) | x € X) ==2, .« p(x) log,p(x).

Generalized Hartley measure in Dempster-Shafer
Theory (DST):

GH(m) = 3, .xm(A) log,|A|

All intuitively reasonable candidates for a generalized
Shannon measure failed the subadditivity requirement.

Aggregated total uncertainty in any theory of imprecise
probabilities:

S'(D) = max,,. pl—2xex P(X) log,p(x)}
This measure satisfies all the essential requirements for

measures of uncertainty, but it is insensitive to changes
in evidence.



ENTROPY-LIKE MEASURE IN DST: Attempts
eC(m)=- X m(A)log, Bel(A) =— X m(A) logz[l— Zm(B)]
AeF AeF BzA
Confusion: Hohle (1982)

eE(m) = —AEf m(A)log, PI(A) = —AZy m(A) log,[l - m§=(B):|
Dissonance: Yager (1983)

B —AI]

[B]

Discord : Klir & Ramer (1990); conjunctive set-valued statements

eD(m)=- 3 m(A) log,[l - X m(B)
AefF BeF

A -B]
¢ ST(m) = —AZGZf m(A) logz[l - B% m(B) Al

Strive: Klir & Parviz (1992 ); disjunctive set-valued statements



DISAGGREGATED UNCERTAINTIES

« Disaggregated total uncertainty with two components:

TU = (GH, S™- GH)

« An alternative disaggregated total uncertainty with two
components:

*TU =(S-S., S.)

o Global disaggregated uncertainty that consists of three
components:

GU=(GH, S-S, S.)
» S.(D) = min,, pl—2ex P(X) log,p(x)}
S'(D) = max,. pl—2yex P(X) log,p(x)}

GH(m) = 3, ,m(A)log, | A |



INDEPENDENCE OF MARGINAL UNCERTAINTIES VIA
THE CLASSICAL PROBABILISTIC INDEPENDENCE
APPLIED TO CONVEX SETS OF PROBABILITY
DISTRIBUTIONS (STRONG OR CLASSICAL
INDEPENDENCE)

Marginal sets: X = {x;|i€ N,} and Y = {y,|j e N}
Jointset: Z=XXY

Given: convex sets of marginal probability distributions Dy
and D,

Under the assumption of strong independence, the joint set of
probability distributions on Z, denoted by D, is defined by
applying classical probabilistic independence to Dy and Dy;:

D={p | p(z;) = px(x).py(y;), Px € Dy, py€ Dy,i€ N, j € N}

WA) = infpeD{Zin(zij) | z; € A}, VA



Mobius independence (also called mass
independence):

my(A)-my(B) whenC = AxB
0 otherwise.

m(C) = {

Possibilistic independence:

r(x,y) = min{ry(x), r(y)},x€ X,y € Y



GH Ss: Smt S* == GH S* == S*
Strong independence | No | Yes | Yes| No Yes
Mass independence |Yes|No |Yes| Yes No




‘ Principles of Uncertainty |

* Principle of Minimum Uncertainty
* Principle of Maximum Uncertainty

e Principle of Uncertainty Invariance

e Principle of Requisite Generalization
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Assumption: Theory T, is more general than theory T
@ Minimum — unceftainty principle
@ Maximum — uncertainty principle
@ Requisite generalization

@ Uncertainty — invariance principle



THE MARGINAL PROBLEM
Given marginal probabilities (or marginal lower probabilities)

what are the joint probabilities (or the joint lower probabilities)?

x; @ p(x)

X2 @ p(xz)

pOn) p(y2) = Given

Example: p(x;)=0.8, plx;)=0.2
() =0.6, p(y) =04
¢ Remaining in probability theory: maximum entropy principle
Pu=px1) - p(y1) = 0.48, pi; = p(x1) - p(y2) = 0.32
P21 =p0a2) - p(y1) = 0.12, p; = p(x3) - p(y2) = 0.08.
TU =0, 1.693)
¢ Requisite generalization: the following convex set of joint probability
distributions (epistemologically honest representation of evidence — the
marginal probability distributions):
pn €[max {0, p(x;) + p(y1) — 1}, min{ p(x1), p(y1)}] = [0.4, 0.6]
P2 =p(x1) —pu=0.8-py
P21 =p(y1) —pu=0.6-py
P2 =1-p(x1)—py1) + pu=pn-04
TU ={0.332, 1.683)
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