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Abstract


Previous works ([5][6][8])) have presented a frequen-
tist interpretation of sets of measures as probabilis-
tic models which have denominated chaotic models.
Those models, however, dealt only with sets of prob-
ability measures on finite algebras, that is, probabil-
ity measures which can be related to variables with a
finite number of possible values. In this paper, an ex-
tension of chaotic models is proposed in order to deal
with the more general case of real-valued variables.


Keywords. Imprecise probabilities, foundations of
probability, chaotic probability models, frequentist in-
terpretation.


1 Introduction


In a series of papers ([5][6]), we presented the first
steps towards a frequentist interpretation of sets of
measures as probability models, which we have called
chaotic probability models in order to distinguish them
from other plausible interpretations. This work was
coherently presented in [4] and extended by Rêgo and
Fine in [8]. In our previous work, we presented chaotic
models as simply sets of probability measures whose
domain is a finite set of events. In this sense, we may
associate chaotic probability models to discrete “ran-
dom”1 variables with finite range (e.g., the outcome
of the flipping of a coin or the tossing of a die). In this
paper, we present a simple approach to the extension
of chaotic probability models to real-valued variables
(e.g., tomorrow’s minimum temperature).


The paper is organized as follows. Section 2 presents
some concepts of the previous work which are needed
for this paper. In Section 3, we provide the basic mo-
tivation behind the model which is described in Sec-
tion 4. In the latter Section, we also show that such


1We use quotation marks to denote the difference between
these chaotic variables and the usual understanding of random
variables.


a model is plausible. Section 5 is devoted to present
extensions for this framework of the concepts of visi-
bility and temporal homogeneity defined in previous
works. Finally, in Section 6 we discuss the results pre-
sented in this paper and suggest future lines of work.


2 Variables with finite range


We need to recall the interpretation of chaotic proba-
bility models for variables with finite range ([6][4][8]).


2.1 An Instrumental Description of the
Model


The instrumental (that is, without commitment to
reality) description of chaotic probability models pre-
sented in earlier works is basically preserved in this
paper. Let X be a finite sample space. We denote
by X∗ the set of all finite sequences of elements taken
in X. A particular sequence of n samples from X
is denoted by xn = {x1, x2, · · · , xn}. P denotes the
set of all measures on the power set of X. A chaotic
probability model M is a subset of P and models the
“marginals” of some process generating sequences in
X∗.


Given any n ∈ N, consider the generation of a se-
quence xn of length n by the following algorithm2:


FOR k = 1 TO k = n


1. Choose ν = F (xk−1) ∈ M.


2. Generate xk according to ν.


where F : X∗ → M is a function corresponding to the
decisions causally made by the algorithm at each step.
Let νk = F (xk−1). For any k ≤ n, F determines the
probability distribution of the potential kth outcome
Xk of the sequence,


(∀A ⊆ X) P
(
Xk ∈ A|Xk−1 = xk−1


)
= νk(Xk ∈ A).


2We denote the empty string by x0.







The probability of a particular realization xn of a se-
quence of random variables Xn is given by


P (X1 = x1, . . . , Xn = xn) =
n∏


k=1


νk(Xk = xk).


We denote by M∗ the family of all such process mea-
sures P , one for each possible function F . From the
analysis of data, we do not expect in general to be
able to pinpoint a single P ∈ M∗ or even a small
subset of M∗, what we call a fine-grained picture
of the source. On the contrary, we expect our know-
able operational quantities to be (large) subsets
of M∗ which provide an appropriate coarse-grained
description of the source.


2.2 Data analysis and estimation


We begin the study of a sequence xn ∈ X∗ by analyz-
ing it into several subsequences. These subsequences
are selected by rules that satisfy the following
Definition 1. A computable function ψ : X∗ →
{0, 1} is a causal subsequence selection rule (also
known as a Church place selection rule) if for any
xn ∈ X∗, xk is the j-th term in the generated subse-
quence xψ,n, of length λψ,n, whenever


ψ(xk−1) = 1,


k∑


i=1


ψ(xi−1) = j, λψ,n =
n∑


k=1


ψ(xk−1).


Let Ψ = {ψα} be a set of causal subsequence selection
rules. For each ψ ∈ Ψ, we study the behavior of the
relative frequency of marginal events along the cho-
sen subsequence. That is, given xn and a selection
rule ψ ∈ Ψ we determine the frequentist empiri-
cal (relative frequency) measure µ̄ψ,n along the
subsequence xψ,n through


(∀A ⊂ X) µ̄ψ,n(A) =
1


λψ,n


n∑


k=1


IA(xk)ψ(xk−1),


where IA(·) is the indicator function of the event A.


A family of subsequence selection rules Ψ is key to our
understanding of a chaotic probability model as given
by a set of measures M. It has been proved that:


• so long as we restrict to a family of causal se-
lection rules of moderate size, we can with high
probability avoid extracting arbitrary patterns
through some of the selected subsequences and
instead exhibit the patterns that have inductive
validity (see [6] and [4]).


• chaotic probability models M can be estimated
from the empirical relative frequency measures if


the appropriate family of subsequence selection
rules is chosen (see [6] and [4] ). Rêgo and Fine
[8] showed how to choose a universal family of
place selection rules to make the model visible.


• the visibility (possibility of estimation) of a
chaotic probability model M depends strongly
on the choice of the subsequence selection family,
i.e., there are cases where M can be estimated by
a family Ψ0 while another family Ψ1 only “sees”
one measure in ch(M) (see [6] and [4]).


3 Motivation


In what follows, we shall assume that (X,X ) is a mea-
surable space and that P is the set of all probability
measures on X . A chaotic probability model is repre-
sented mainly by a set M ⊂ P.


The instrumental description of chaotic probability
models summarized in Section 2.1 can be extended to
variables with infinite (even uncountable) range with-
out changes. Therefore, the problem of the extension
of chaotic probability models to more general spaces
lies on the task of making such models “visible” (in
an intuitive sense) when they are represented as in
Section 2.1.


One possibility is to allow, as in the finite case, for
the estimation of the measures in M by means of the
empirical relative frequencies:


µ̄ψ,n(A) =
1


λψ,n


n∑


k=1


IA(xk)ψ(xk−1).


The difficulty then becomes the choice of the sets
A ⊂ X that should be used. For, in general, it is
impossible to compute µ̄ψ,n(A) for all A in a σ-field.
Furthermore, it may make no sense at all to try to
assess such a fine-grained model.


We may also charge the statistician with the respon-
sibility of choosing a collection of subsets A ⊂ X ade-
quate for the problem at hand. If we follow this path,
we may as well allow for greater generality by let-
ting the practitioner to choose a suitable finite family
F of real-valued bounded measurable test functions
f : X → R and proceeding to the estimate by means
of the empirical relative frequencies


µ̄ψ,n(f) =
1


λψ,n


n∑


k=1


f(xk)ψ(xk−1).


We may conceive these functions as those which are of
actual interest for the problem at hand. We may also
understand the family of functions F together with
the family of subsequence selection rules Ψ as a rep-
resentation of the discernment power of the observer







or, at least, of the coarse-grainedness appropriate for
the model. In particular note that if we restrict our-
selves to bounded test functions, the family F may
contain indicator functions of the type IA, A ⊂ X.


From a technical viewpoint, the trick is simple: we
substitute the finite algebra of events related to a dis-
crete variable by a finite set of test functions applied
to a real variable. With this idea in mind, all previous
results (e.g., those in [6]) can be easily extended, as
it is shown in Section 5.


3.1 Test functions as gambles


From a behavioral stand, we may also consider F as
a collection of gambles in the sense of Peter Walley:


“A gamble is a bounded real-valued function
on Ω [the sample space] which is interpreted
as a reward.” ([11], Chapter 2)


Therefore, from this point of view, the estimates
µ̄ψ,n(f) can be understood as estimates of the set
of linear previsions dominating a coherent lower pre-
vision based on the gambles F (see [11], especially
Chapters 2 and 3).


There is, however, a key difference with some of the
work of Peter Walley in [11] in the sense that we are
not interested in pursuing an equivalent to the natural
extension in our framework. We assume that a finite
set of test functions (or gambles) F is enough for the
purposes of a given problem. In other words, we do
not feel compelled to make probabilistic assessment
over anything else than F.


If we take the discussion in the last paragraph one step
further, we may allow to specify a chaotic probability
model by, not a precise set of probability measures
M, but by a collection of “previsions” Pr defined as


(∀f ∈ F)Pr(f) ⊂ R, Pr = {Pr(f) : f ∈ F} ,


and where, intuitively,


Pr(f) = {µ(f) : µ ∈ M}
for some unspecified set M.


There is another difference with the work of Peter
Walley: we consider only countably additive linear
previsions P. Theorem 3.6.1 of Walley [11] shows
that there is a one to one correspondence between
the coherent lower previsions on the domain of the
bounded gambles and the non-empty weak*-compact
convex subsets M of Pl, the set of all linear previsions.
Although Pl is the weak*-closure of P, the latter is
strictly contained in the former if the sample space X
is infinite (see [11], Appendix D and Section 3.6.8).


Since we do not desire to follow closely any behavioral
interpretation and in order to avoid confusion, we con-
tinue to refer to the elements of F as test functions
rather than gambles.


3.1.1 Gambling with nature


Shafer and Vovk ([10]) present a game-theoretic in-
terpretation of probabilistic reasoning where there are
three players:


1. Nature: It determines what may happen in the
world, that is, the outcomes of a given game.


2. Modeler: Modeler suggests a theory about how
Nature behaves. Based on this theory, Modeler
proposes a game to Skeptic.


3. Skeptic: Skeptic tries to show that Modeler’s
theory is wrong by betting on the proposed game.
If Modeler’s theory is “correct”, Skeptic should
not be able to make a high profit (with “not-too-
low probability”).


It is easy to see a relationship between the work
presented here and the theory of Shafer and Vovk.
Modeler has an instrumental understanding of how
Nature works (see Section 2.1): There is a certain set
of measures M ⊂ P such that


FOR k = 1 TO k = n


1. Nature chooses ν ∈ M based on
xk−1.


2. Nature generates xk according to
ν.


Note that Nature is causal, but not necessarily marko-
vian. Also note that Modeler does not need to know
the set M, but Modeler does know {µ(f)}µ∈M for all
f ∈ F. Based on this understanding of Nature’s be-
havior, Modeler proposes any of the following gambles
to Skeptic:


Skeptic’s initial capital is K0 = 0.


Skeptic chooses f ∈ F.


FOR k = 1 TO k = n


1. Skeptic chooses θk ∈ {0, 1} based on
xk−1.


2. Nature generates xk.


3. Skeptic’s capital is now


Kk = Kk−1 + θk


(
f(xk)− sup


µ∈M
µ(f)


)
.







Note that Skeptic’s sequence of bets {θk} can be as-
sociated with a causal subsequence selection rule ψ
(see Def. 1), if Skeptic can only use computable
strategies. Note also that, if Skeptic needs to keep
track of his capital, he must be able to compute his
earnings. One necessary (but not sufficient) require-
ment for this is that the test functions be computable
in a reasonable sense (see Section 3.2). We shall come
back to this game in Section 4.


3.2 Computability of test functions and
place selection rules


One reasonable restriction on test functions is to ask
them to be computable, i.e., that their value can
be calculated. Also, place selection rules must be
able to output values in {0, 1} when having tuples of
real values as inputs. The problem then becomes to
find a reasonable definition of computable real-valued
functions with real-valued input variables. To our
knowledge, there are mainly two broad approaches
to such a definition in the area of computational anal-
ysis (see, e.g., [2] [1]). On one hand, there are the
traditional approach and its many variations and ex-
tensions which are based, loosely speaking, on the fol-
lowing ideas:


• Given a finite alphabet, say A, and an adequate
program M , a description of an element y of some
space Y is a finite string a = a1a2 · · · ak, ai ∈ A,
such that y = M(a).


• It may be the case that not all the elements of
some space have a description. However, an ele-
ment y is considered to be computable if there is
an approximating sequence of descriptions {ai},
i.e., the strings ai are such that the outputs
yi = M(ai) get increasingly closer to y.


• A function f : Y → Z is computable if for each
computable number y ∈ Y, with approximating
sequence {ai}, there is a program P such that
{P (ai)} is an approximating sequence of descrip-
tions for f(y) ∈ Z.


This approach models well scientific computations.
Moreover, most “calculator” functions (polynomials,
log(x),


√
x, etc.) are computable under this approach.


On the other hand, there is the Blum-Shub-Smale
(BSS) approach which is based on computing ma-
chines that can deal with elements of any field R (e.g,
R = R) and that are allowed to perform the field op-
erations (+, −, × and %) on R and can branch on
comparisons (<, >, ≤) between elements of R if it
is ordered. The fact that the BSS approach is very


useful in numerical modelling should not come as a
surprise.


Since we are focused on calculations that can be made
on any personal computer, we shall take the first ap-
proach to computability of real-valued functions.


3.2.1 Computable functions of real variable


The material in this section is taken from Weihrauch
[12] (see also [7]). There are other approaches which
are equivalent and quite powerful, for example, that
based on domain theory (see, e.g., Edalat [3]), but less
intuitive.


Let A be any finite alphabet. The finite strings of
elements of A will be denoted by A∗ and the infinite
sequences of elements of A will be denoted by A∞.


Definition 2. (Computability by Type 2 ma-
chines)


1. A Type 2 machine M is defined by two com-
ponents:


(a) a Turing machine with k one-way input
tapes (k ≥ 0), a single one-way output tape
and finitely many work tapes,


(b) a type specification (Y1, · · · ,Yk,Y0) with
{Y0, · · · ,Yk} ⊆ {A∗,A∞}.


2. The function ρM : (Y1 × · · · ×Yk) → Y0 com-
puted by the Type 2 machine M (the semantics
of M) is defined as follows:


(a) Case Y0 = A∗ (finite output):
ρM (y1, · · · , yk) = w iff M with input
(y1, · · · , yk) halts with result w on the output
tape.


(b) Case Y0 = A∞ (infinite output):
ρM (y1, · · · , yk) = p iff M with input
(y1, · · · , yk) computes forever writing the
sequence p on the output tape.


3. We say that a function ρ : (Y1 × · · · × Yk) →
Y0 is computable iff ρ = ρM for some Type
2 machine M . A sequence y is a computable
element of Y0 iff the 0-place function ρ : {()} →
Y0 with ρ() = y is computable.


Type 2 machines can be considered as a certain kind
of oracle Turing machines and computability with re-
spect to them is entirely classical. In order to extend
the concept of computability to functions, e.g., over
the reals, we need the concept of a naming system.
Indeed, objects like real numbers can be represented
(named) by finite or infinite sequences of finite alpha-
bets. For example, we can represent a real number







in [0, 1] by its (probably infinite) representation by a
binary sequence. These ideas are formalized in the
following


Definition 3. (Naming System. Reducibility)


1. A notation of a set X is a surjective function
ρ : A∗ → X (naming by finite strings).


2. A representation of a set X is a surjective
function ρ : A∞ → X (naming by infinite se-
quences).


3. A naming system of a set X is a notation or a
representation of X.


4. For functions γ : Y → X and γ′ : Y′ → X′


with Y,Y′ ⊆ {A∗,A∞}, we call γ reducible to
γ′, γ ¹ γ′, iff there exists a computable function
ρ : Y → Y′ such that (∀y ∈ dom(γ)) γ(y) =
γ′(ρ(y)). We say that γ and γ′ are equivalent,
γ ≡ γ′, iff γ ¹ γ′ and γ′ ¹ γ.


In order to clarify ideas, we present some common
naming systems:


• Binary representation of N: ρbin : {0, 1}∗ → N,
ρbin(a0a1 · · · ak) =


∑k
i=0 ai2i.


• Rational numbers: ρQ : {+,−} × {0, 1}∗ ×
{0, 1}∗ → Q, ρQ(s, bn, bd) = sρbin(bn)


ρbin(bd) .


• Interval Representation of R: Let SQ be the set
of all infinite sequences of triples (s, n, d) taken
from {+,−}×{0, 1}∗×{0, 1}∗. Then define ρint :
SQ × SQ → R by


ρint(a0a1a2 · · · , b0b1b2 · · · ) = x ⇔
⇔ lim


n→∞
ρQ(an) = lim


n→∞
ρQ(bn) = x


and


ρQ(a0) < ρQ(a1) < · · · < x <


< · · · < ρQ(b1) < ρQ(b0).


The latter naming system leads to the following


Definition 4. (Computable Real Numbers) x ∈
R is computable if it is ρint-computable.


The definition of naming systems leads to the exten-
sion of the definition of computable functions that we
need for this paper:


Definition 5. (Relative Computability)


1. For i = 0, 1, · · · , k, let γi : Yi → Zi be naming
systems. A function δ : Z1 × · · · × Zk → Z0


is (γ1, · · · , γk, γ0)-computable iff there is a Type
2-computable function (in the sense of Def. 2)
ρ : Y1 × · · · ×Yk → Y0 such that


δ(γ1(y1), γ2(y2), · · · , γk(yk)) =
= γ0(ρ(y1, y2, · · · , yk)),


whenever δ(γ1(y1), γ2(y2), · · · , γk(yk)) exists.


2. We say that a real-valued function of a real vari-
able is computable if it is (ρint, ρint)-computable.


One important consequence of the definition of com-
putability is that all computable functions are contin-
uous (see [12]).


We shall require all admissible test functions to be
computable. Some examples of real-valued com-
putable functions are: +, −, ×, 1/x, exp, log, sin,
cos, √ , min, max, etc.


We shall also require place selection rules to be com-
putable functions of tuples of real variables, in the
sense of Definition 5, which take only values in {0, 1}.
In other words, we shall require of a place selection
rule ψ to be (ρint, · · · , ρint)-computable, where ρint


appears k + 1 times, for each k ≥ 0.


We shall also need the following


Definition 6. (Computable Probability Mass
Function) Let (X,X ) be a measurable space, with
X containing the singleton sets. Then, we say that
a probability mass function on (X,X ) is computable
if each of the probability values is computable in the
sense of Def. 4.


4 Chaotic probability model


Let Ψ = {ψα} be a set of causal subsequence selec-
tion rules and F = {fβ} a collection of bounded real-
valued test functions. For each ψ ∈ Ψ, we study the
behavior of the relative frequency of (only) fβ along
the chosen subsequence. That is, given xn and a se-
lection rule ψ ∈ Ψ we determine the frequentist em-
pirical (relative frequency) measure µ̄ψ,n along
the subsequence xψ,n through


(∀f ∈ F) µ̄ψ,n(f) =
1


λψ,n


n∑


k=1


f(xk)ψ(xk−1).


In a similar manner, for all such rules ψ, we define the
time average conditional measure ν̄ψ,n (∀f ∈ F)


ν̄ψ,n(f) =
1


λψ,n


n∑


k=1


E
[
f(Xk)|Xx−1 = xk−1


]
ψ(xk−1).







Rewritten in terms of our instrumental understanding
of the measure selection function F ,


ν̄ψ,n(f) =
1


λψ,n


n∑


k=1


νk(f)ψ(xk−1),


where νk = F (xk−1). Note that, since we assume F
to be unknown, the time average conditional measure
ν̄ψ,n is also unknown. Since we want to expose some
of the structure of the chaotic probability model M
by means of the rules in Ψ, we are interested in how
good µ̄ψ,n is as an estimator of ν̄ψ,n.


Define the metric dF on P by


dF(ν, µ) = max
f∈F


|µ(f)− ν(f)|, (∀µ, ν ∈ P).


We call F-causally faithful a set of rules Ψ such that
any ψ ∈ Ψ yields a small value of dF(ν̄ψ,n, µ̄ψ,n) with
high probability. The existence of such a set of rules
is stated by
Theorem 1. Let m ≤ n and fix Ψ and F of finite car-
dinality, denoted by ‖Ψ‖ and ‖F‖ respectively. Then
(∀P ∈ M∗)


P


(
max
ψ∈Ψ


{dF(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m} ≥ ε


)
≤


≤ 2‖F‖‖Ψ‖e−
ε2m2


8β2n ,


where
β = max


f∈F
sup
x∈X


|f(x)|.


The proof of the theorem is completely analog to that
of Theorem 1 in [6] (see also the appendix to Chapter
4 in [4]). The consequence of this theorem is that,
as long as we restrict to small-sized families of causal
selection rules we can with high probability avoid ex-
tracting arbitrary patterns through some of the se-
lected subsequences.


Recall the game in Section 3.1.1 proposed by Modeler
to Skeptic. If Modeler is right, the probability that
Skeptic becomes rich is very low. This is exactly
what the following result shows.
Lemma 1. Consider the game played by Modeler and
Skeptic. Then (∀ε > 0) (∀m ≤ n)


P (Kn ≥ mε) ≤ 2e−
ε2m2


8β2n ,


where
β = max


f∈F
sup
x∈X


|f(x)|.


The proof of this lemma follows along the same lines
as the proof of Theorem 1.


4.1 Collection of expected values as a model


In Section 3.1, we suggested the idea of taking the col-
lection of expected values as the actual model, defin-
ing implicitly the set of probability measures M. The
following Lemma shows that M defined in this way
has a particularly simple structure.


Lemma 2. Let (X,X ) be a measurable space and P
the set of all probability measures on it. Assume that
X contains the singletons. Let F = {f1, · · · , fN} be a
finite collection of real-valued bounded functions. Let
the set


Pr ⊂
[


inf
x∈X


f1(x), sup
x∈X


f1(x)
]
× · · ·


· · · ×
[


inf
x∈X


fN (x), sup
x∈X


fN (x)
]
⊂ R‖F‖


be given. Define a set of measures by


MPr = {µ ∈ P : (µ(f1), · · · , µ(fN )) ∈ Pr} .


Then, the measures in MPr are ε-indistinguishable
from measures with finite support in the sense that
for each ε > 0 there are points x1, · · · , xL(ε) in X
such that (∀µ ∈ MPr )(∃ν ∈ MPr ) such that


dF(µ, ν) ≤ ε, and
L(ε)∑


i=1


ν({xi}) = 1.


In other words, Lemma 2 tells us that, as long as
we restrict ourselves to a finite set of test functions,
there is no substantial difference (what concerns the
test functions) between the behavior of a given chaotic
real variable and that of a particular chaotic discrete
variable with finite range. This fact not only opens
up the door to the reuse of previous results which
were originally conceived for discrete variables, but
it also shows the way in which chaotic real variables
can be simulated. Indeed, the simulation of chaotic
real variable is not different from that of an adequate
chaotic discrete variable according to Lemma 2, and
the simulation of the latter type of variables was al-
ready explained in [6] (see also the proof of Theorem
3 in the Appendix).


Hence, using a collection of expected values of a fi-
nite set of test functions Pr as a model, gives us only
a coarse-grained, blurred view of how a real variable
behaves. This model may be as precise as we are ca-
pable of (or willing to) build it. However, the model
is so fuzzy, our view so blurred, that we cannot distin-
guish with certainty whether we observe a real-valued
variable or just a simple discrete variable which takes
only a few values. By the way, this should not be







very surprising for, that who observes a finite num-
ber of outcomes of a uniformly distributed random
variable in [0, 1], how can he be certain that he was
dealing with a real random variable or just a complex
discrete random variable.


5 Visibility and Temporal
Homogeneity


In this section, we present extensions to those con-
cepts of visibility and temporal homogeneity which
were defined in [6]. The proofs of the results that
follow are also analog to the proofs of the results in
[6] thanks to the finiteness of the set of bounded test
functions F and Lemma 2.


The possibility of exposing all of M by means of the
rules in Ψ is expressed in the following


Definition 7. (Visibility)


(a) M is made F-visible (Ψ, θ, δ,m, n) by P ∈ M∗


if


P



 ⋂


µ∈M


⋃


ψ∈Ψ


Cψ



 ≥ 1− δ,


where


Cψ = {Xn : λψ,n(Xn) ≥ m, dF(µ̄ψ,n, µ) ≤ θ}.


(b) A subset M′ of M∗ renders M uniformly
F-visible (Ψ, θ, δ,m, n) if M is made F-visible
(Ψ, θ, δ,m, n) by each P ∈ M′. The maximal such
subset is denoted MV (Ψ) and MV (Ψ) may be empty.


The non-triviality of Definition 7(a), and, hence, of
Definition 7(b), is asserted in


Theorem 2. Let M be a set of probability measures
and F a finite family of real-valued bounded functions
on X. Given 0 < 2ε < θ, for large n, there exists
a process measure P and a family Ψ of size Nε such
that M is made F-visible (Ψ, θ, δ,m, n) by P with


δ = 2(‖F‖+ 1)Nεe
− (θ−2ε)2m2


8β2n ,


where
β = max


f∈F
sup
x∈X


|f(x)|,


Nε ≤
⌈


2β


ε


⌉‖F‖
.


The fact that not every set of rules Ψ can expose all
of M is expressed by the concept of temporal homo-
geneity defined as follows.


Definition 8. (Temporal Homogeneity)


(a) P ∈ M∗ is F-temporally homogeneous
(Ψ, θ, δ,m, n) if


P (∆Ψ ≤ θ) ≥ 1− δ,


where


∆Ψ =
= max


ψ1,ψ2∈Ψ
{dF(µ̄ψ1,n, µ̄ψ2,n) : λψ1,n, λψ2,n ≥ m} .


(b) A subset M′ of the set of all possible process
measures M∗ is uniformly F-temporally homo-
geneous (Ψ, θ, δ,m, n) if each of the elements of M′


is temporally homogeneous (Ψ, θ, δ,m, n). The maxi-
mal such subset is denoted MT (Ψ).


As it was the case with chaotic variables with finite
range, a model M may be visible under a certain fam-
ily of subsequence selection rules and temporal homo-
geneous under another, as the following result shows.
Theorem 3. Let F, Pr and MPr be as in Lemma 2.
Let ε > β


m , where


β = max
f∈F


sup
x∈X


|f(x)|.


Let Ψ0 be a set of (causal deterministic) place selec-
tion rules. Then, there are a process measure P and
a family Ψ1 such that, for large enough n, P will both
render MPr F-visible (Ψ1, 3ε, δ,m, n) and ensure F-
temporal homogeneity (Ψ0, 6ε, δ,m, n) with


δ = 2‖F‖max {‖Ψ0‖, ‖Ψ1‖} e−
ε2m2


8β2n .


Although the proof of this theorem is very similar to
that of Theorem 4 in [6], we include a sketch in the
appendix because it shows clearly how the concepts of
computability of real-valued functions, the finiteness
of the set of test functions F and Lemma 2 are applied
in order to reuse previous results under the current
framework.


6 Conclusions and future work


The extension of chaotic probability models proposed
in this paper does not carry in itself any technical nov-
elties with respect to previous works, except perhaps
for Lemma 2. Although this may seem disappoint-
ing, we believe it is the best feature of the current
presentation, i.e., that it allows a smooth and simple
extension of chaotic models to real-valued variables.


Besides extending previous works on chaotic models,
a different viewpoint on them is offered in Section







4.1, where we suggest to get rid of the set of measures
and work directly with the assessment of “expected”
values of the test functions. Although this idea is not
novel in itself, it is in the framework of chaotic models.


The relation between gambles and test functions
sketched in Section 3.1 may allow to those pursuing
behavioral interpretations of probability to deal with
chaotic models without any sense of guilt.


Lemma 2 shows that the finiteness of our discernment
is implicitly embedded in the finite number of test
functions.


There are several matters which were left out of this
paper. For example, it is easy to see that the same
ideas can be applied to tuples of variables. Then, the
question becomes what the relation is between chaotic
models on tuples of variables and the “marginal”
chaotic models and how independence can be charac-
terized. The problem of marginalizing chaotic models
on tuples is difficult because the corresponding test
functions must also be marginalized.
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Appendix A: Proof of Lemma 2


In order to prove Lemma 2, we need the following
preliminary result.


Proposition 1. Let ε > 0 be given and let β > 0 be
defined as


β = max
f∈F


sup
x∈X


‖f(x)‖.


Then, there is a finite set Mε = {ν1, ν2, · · · , νNε} ⊂
MPr such that


Nε ≤
⌈


2β


ε


⌉‖F‖
,


and
sup
µ∈M


min
1≤i≤Nε


dF(µ, νi) ≤ ε.


Proof. Let N = ‖F‖ and consider the set in RN


A = {(µ(f1), · · · , µ(fN )) : µ ∈ MPr
} .


Then, it is clear that A is included in the closed hy-
percube [−β, +β]N . Moreover, this hypercube can be


covered by a set of
⌈


2β
ε


⌉N


smaller hypercubes of side
ε.


We also need the following result from Rudin [9] (see
Lemma after Theorem 3.25 in Rudin [9], page 73).


Lemma 3. If y lies in the convex hull of a set E ⊂
RN , then y lies in the convex hull of a subset of E
which contains at most N + 1 points.


Now, we are ready for the proof of Lemma 2:


Proof. Let f
x


= (f1(x), · · · , fN (x)) for all x ∈ X, and
µ = (µ(f1), · · · , µ(fN )) for all µ ∈ MPr


. Consider the
following set:


E =
{


f
x


: x ∈ X
}
⊂ RN .


It is clear that Pr ⊆ ch(E), where ch(E) is the convex
hull of E. By Lemma 3, for each νk ∈ Mε, where
Mε is as in Prop. 1, there are at most N + 1 points
f


x
{k}
1


, · · · , f
x
{k}
L


in E such that


νk =
L∑


i=1


p
{k}
i f


x
{k}
i


,


where


p
{k}
i ≥ 0,


L∑


i=1


p
{k}
i = 1.


Define the probability measures {ν′k} on (X,X ) by


ν′k({x}) =


{
p
{k}
i if x = x


{k}
i ,


0 otherwise.


Let A = ∪k


{
x
{k}
1 , · · · , x


{k}
L


}
. Clearly, the cardinal-


ity of A is


L(ε) = ‖A‖ ≤ (N + 1)×
⌈


2β


ε


⌉‖F‖
.


Then the measures ν′k are as required by the Lemma.


Appendix B: Proof of Theorem 3


By Lemma 2 and Prop. 1, there is a set of measures
with finite support Mε =


{
ν′1, ν


′
2, · · · , ν′Nε


}
such that


sup
µ∈M


min
1≤i≤Nε


dF(µ, ν′i) ≤
ε


2
,







where the supremum is over all measures in MPr
and


Nε ≤
⌈


4β


ε


⌉‖F‖
,


where β is defined as in Prop. 1. Since the mass on
each of the supporting atoms can be approximated as
closely as desired by rational numbers and the fact
that rational numbers are computable in the sense of
Section 3.2, then it is easy to see that for each ν′k ∈ Mε


there is a computable probability mass function (in
the sense of Def. 6) µk such that dF(ν′k, µk) ≤ ε


2 and,
hence,


sup
µ∈M


min
1≤i≤Nε


dF(µ, µi) ≤ ε,


where the supremum is over all measures in MPr
.


Note that the measures {µi} are not necessarily in
MPr


3. We may assume that ε is a computable num-
ber w.l.o.g.. Consider the following construction of
P :


• Choose any measure ν0 ∈ MPr . Let µ0 be any
computable probability mass function such that
dF(ν0, µ0) < ε.


• Define Nε counters i(1), · · · , i(Nε) and set them
to 0.


• For each k > 0 define,


– (∀ψ ∈ Ψ0), ν̄ψ,k−1 = 1
λψ,k−1


∑k−1
l=1 ψ(xl−1)νl


if λψ,k−1 > 0, and ν̄ψ,k−1 = µ0 otherwise.


– αk = 0 if (∀ψ ∈ Ψ0) ψ(xk−1) = 0, and αk =
maxψ∈Ψ0


{
dF(ν̄ψ,k−1, µ0) : ψ(xk−1) = 1


}
otherwise.


– jk = argmin i(j).


Note that αk depends only on xk−1.


• If αk > ε, let νk = µ0. Otherwise, let νk be the
computable probability measure µjk


and incre-
ment i(jk) by 1.


• Generate xk according to νk.


Note that all the steps in the construction are com-
putable, with the exception of the generation of the
outcomes.


Proposition 2. For ε > β/m and large enough n, P
is F-temporally homogeneous (Ψ, 6ε, δ,m, n), with


δ = 2‖F‖‖Ψ0‖e−
ε2m2


8β2n .


3Although we think that this restriction can easily be re-
moved, it does not pose any problem to the proof of the theo-
rem.


Proof. Suppose that there is some ψ ∈ Ψ0 such that
dF(ν̄ψ,n, µ0) > ε and λψ,n ≥ m. Let


δ(µ0) = max
ν∈Mε


dF(µ0, ν).


Since, by construction, as soon as dF(ν̄ψ,n, µ0) > ε
outcomes start to be generated according to µ0, then
we must have


dF(ν̄ψ,n, µ0) <
(λψ,n − 1)ε + δ(µ0)


λψ,n
≤ ε +


β


m
≤ 2ε.


Since by Theorem 1 we have


P


(
max
ψ∈Ψ0


{dF(µ̄ψ,n, ν̄ψ,n) : λψ,n ≥ m} ≥ ε


)
≤


≤ 2‖F‖‖Ψ0‖e−
ε2m2


8β2n ,


the proposition is proved.


Proposition 3. Let


n ≥ δ(µ0)Nεm


ε
‖Ψ0‖+ Nεm− 1.


Then
Nε∑


j=1


i(j) ≥ Nεm, (1)


and, hence,
min


1≤j≤Nε


i(j) ≥ m. (2)


Proof. We call k an exceeding time when


αk =


= max
{
dF(ν̄ψ,k−1, µ0) : ψ ∈ Ψ0, ψ(xk−1) = 1


}
>


> ε.


By the construction of P , it is clear that Eqn. 2 fol-
lows immediately from Eqn. 1. Suppose that Eqn. 1
does not hold. This means that there have been at
least (n−Nεm+1) exceeding times. Since by hypoth-
esis


δ(µ0)Nεm


ε
‖Ψ0‖ ≤ n−Nεm + 1,


there must be a ψ ∈ Ψ0 such that, for its correspond-
ing subsequence, dF(ν̄ψ,k, µ0) has been greater than ε


at least δ(µ0)Nεm
ε times. Note that, for each exceeding


time


ε < dF(ν̄ψ,k, µ0) ≤


≤ (λψ,k − λψ,k,M)× 0 + λψ,k,Mδ(µ0)
λψ,k


=


=
λψ,k,M


λψ,k
δ(µ0),







where λψ,k,M is the number of times, along the sub-
sequence selected by ψ, such that αk ≤ ε. From the
last inequality, it follows that


λψ,k,M >
ε


δ(µ0)
λψ,k.


Therefore, for ψ’s last exceeding time we have


λψ,k,M >
ε


δ(µ0)
λψ,k ≥ ε


δ(µ0)
δ(µ0)Nεm


ε
= Nεm.


However, this contradicts our initial assumption that
there were less than Nεm exceeding times along the
entire sequence. Thus, we must conclude that Eqn. 1
holds.


Let Ψ1 = {ψ1, ψ2, · · · , ψNε
} be a set of Nε place se-


lection rules such that, for 1 ≤ l ≤ Nε, ψl selects
the subsequence where the measure µl has been used.
The fact that such a family Ψ1 of computable place
selection rules exists follows from the construction of
P . Note that Proposition 3 implies that the subse-
quences selected by the rules in Ψ1 have length larger
than or equal to m.


Proposition 4. M is F-visible (Ψ1, 3ε, δ,m, n),
where


δ = 2‖F‖‖Ψ1‖e−
ε2m2


8β2n .


Proof. It is clear that, by construction, for all µ ∈ M
there is a measure µi ∈ Mε and a rule ψ ∈ Ψ1 such
that


dF(ν̄ψ,n, µ) ≤ dF(ν̄ψ,n, µi) + dF(µi, µ) ≤ ε + ε ≤ 2ε.


Then the proposition follows from Theorem 1 and the
fact that Proposition 3 implies that (∀ψ ∈ Ψ1) λψ,n ≥
m.


The proof of Theorem 3 follows from Propositions
2-4.
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[8] Leandro Chaves Rêgo and Terrence L. Fine. Esti-
mation of chaotic probabilities. In Proceedings of
the Third International Symposium on Imprecise
Probabilities and Their Applications, 2005.


[9] Walter Rudin. Functional Analysis. McGraw-
Hill, 1973.


[10] Glenn Shafer and Vladimir Vovk. Probability and
Finance. It’s Only a Game! Wiley Series in
Probability and Statistics. John Wiley & Sons,
2001.


[11] Peter Walley. Statistical Reasoning with Impre-
cise Probabilities. Chapman and Hall, 1991.


[12] Klaus Weihrauch. A simple introduction to
computable analysis (2nd edition). Informatik
Berichte 171, FernUniversitt Hagen, Hagen, July
1995.






