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Abstract

We introduce a new rule for Bayesian updating of
classes of precise priors. The rule combines Wal-
ley’s generalized Bayes rule with a filter based on
prior quantiles of the observational evidence. We
introduce this new “quantile-filtered Bayesian up-
date rule” because in many situations, Walley’s gen-
eralized Bayes rule reveals counter-intuitively non-
informative, dilation-type results while an alternative
rule, the maximum likelihood update rule after Gilboa
and Schmeidler, is not robust against imprecise pri-
ors that are contaminated with spurious information.
Our new quantile-based update rule addresses the for-
mer issue and fully resolves the latter. By the new rule
we update an imprecise prior that was recently mo-
tivated by expert interviews with climate, ecosystem
and economic modelers: a “correlation class” of pre-
cise priors with arbitrary correlation structure, how-
ever, prescribed precise marginals. For an insurance
situation we demonstrate that under our new rule a
set of clients would be insured that is disregarded un-
der standard generalized Bayesian updating.

Keywords. Bayesian updating, Generalized Bayes
rule, imprecise probability, robust Bayesian approach,
modeling expert opinions, prescribed marginals, un-
known correlation structure.

1 Introduction

Complex numerical models provide key working
horses within climate, ecosystem and economic re-
search and hence their output strongly influences the
discussion on ecologically and economically sustain-
able climate policies. In turn, model output strongly
depends on various tuning parameters which cannot
fully be determined through objective data in general.
For that reason Bayesian methods become increas-
ingly popular in these fields as they would allow to
incorporate subjective prior knowledge on model pa-
rameters, often aggregated from scattered sources of

information in the brains of modelers, in a statistical
analysis. A recent semi-formalized expert elicitation
aimed at generic patterns of knowledge vs. ignorance
in modelers’ prior information on multivariate model
parameters [8, 9]. As a key result modelers across
disciplines stated to hold fundamentally more precise
information on marginals than on the (higher order)
correlation structure among parameters.

This key finding from above elicitation fueled our in-
terest in Tchen’s imprecise model [14] (further inves-
tigated in [2, 5, 6, 11, 12]) consisting of a class P
of precise measures P the marginals of which would
all equal certain prescribed marginals. We call this
class “correlation class”. When updating a correla-
tion class along the lines of global Bayesian robustness
[1], i.e. element-wise updating according to standard
Bayes rule, then observing the extremes of ensuing an-
swers as the prior varies over the class, we found non-
informative imprecise posteriors over a wide range of
potential observations y [8, 9].

This is in line with prior results on a similar P by
[11] (see also Seidenfeld and Wasserman [13] for a dis-
cussion of such a dilation phenomenon where poste-
rior bounds are dilated even for all possible measure-
ments y). In case the set P is convex this updating
procedure is equivalent to Walley’s generalized Bayes
rule [15]. We will call this element-wise updating and
subsequent extremizing “GBR” throughout this ar-
ticle regardless of whether P is convex or not. (An
alternative class displaying imprecise correlations is
introduced in [10] characterized by a radially sym-
metric possibility measure. However as no results on
Bayesian updating have been published for that class
so far, we disregard it in the context of this article.)

Gilboa’s and Schmeidler’s maximum likelihood up-
date rule [7] delivers much more informative results.
Their rule is equivalent to applying GBR – not to P
but – to the subset of those precise priors that would
maximize the prior expectation of the evidence y. In
[8, 9] that rule is generalized by not completely dis-



regarding those priors that would not maximize prior
expectation of y but by giving any element of P an
influence, weighted by its prior expectation of y. (y
may either represent a single sample or a number of
samples that can be combined to the multi-variate
observation y.) However as against GBR, both like-
lihood update rules face the problem that spurious
information may enter the final result: in case P con-
tains an unjustified element that accidentally displays
high prior expectation of y, this may result in a poste-
rior that is more precise than for the uncontaminated
version of P .

For that reason here we present a new updating rule
that combines important advantages of GBR and the
latter two likelihood updating rules: (i) it is more
informative than GBR and (ii) in case P is contami-
nated this contamination would not add spurious in-
formation to the posterior.

We are aware that there exists the further method
of reducing the class of priors in view of evidence as
described in [3, 4]. However the relation to our work
appears intricate and its elucidation shall be outlined
elsewhere.

This article is organized as follows. In Section 2 we
introduce the new updating rule. In Section 3 we
apply that rule to the briefly recapitulated imprecise
prior in [8, 9] motivated by above expert elicitation.
In Section 4 we regularize our prior by bounding the
gradients of densities making up the imprecise prior.
In Section 5 we offer an interpretation of our new
updating rule that involves also concepts from classi-
cal statistics and therefore might be controversial. In
Section 6 we compare the results of various updating
methods from the point of view of an idealized insur-
ance company. Finally, in Section 7 we summarize
our findings and outline the most pressing issues from
the point of view of a modeler.

2 The Quantile-Filtered Bayesian
Update Rule

The crucial element of our new updating rule is the
filter that acts on P , before GBR is applied.

Definition 1 Let P represent an imprecise prior
made up by a non-empty set of precise priors. Let
Q ∈]0, 1[. Let PL denote the probability measure in-
duced by a precise prior P ′ ∈ P and the precise like-
lihood L on the space of all potential observations
Y . Then YPLYQ is a generator of a Q-filtered
Bayesian update rule (QFB) iff YPLYQ : P →
2Y with ∀y∈Y ∀P ′∈P PL(y ∈ YPLYQ(P ′)) ≥ Q.

Expert

( )P x

Stochastic Process
relating parameter
and potential
measurement

x

y’
P y’ x( | )

Expert’s probability
of potential
measurement y’

P y’ x P x P y’ x( ) = d ( ) ( | )ò

Expert #1

( )P x1

Expert #2

( )P x2

P y’1( )

y’Y

area
=Q

y

actualy
measured
y’=y

P y’2( )

y’Y

area
=Q

y

actualy
measured
y’=y

Expert #1
approved

( )P x1

Expert #2
failed

( )P x2

P1 ÎV

Figure 1: Scheme for the construction of the subset V
in the class of priors. Any prior (here identified with
a different “expert”) induces – through a given likeli-
hood – a probability measure on the space of potential
measurements y′ (bottom). Once the measurement
has been realized, i.e. y′ := y, one can disregard pri-
ors that display y outside of a quantile, characterized
by a pre-set probability Q.

Hence Y maps P ′ ∈ P onto a prior (≥ Q)-quantile
in observation space. As an illustrative example, in
Figure 1, the two elements of P , P1, P2, are mapped
onto an interval ] − ∞, y′max] within the respective
abscissa (the latter denoting the space of potential
observations y′).

Definition 2 Let P , Q, L, PL, Y as above and YPLYQ
the accompanying generator of a Q-filtered Bayesian
update rule. Then VPLYQ is a Q-GBR-filter iff
VPLYQ : Y → 2P , y 7→ {P ′ ∈ P | y ∈ YPLYQ(P ′)}.

Hence for given observation y, V(y) represents those
priors for which y is not too “far-fetched” (see Fig-
ure 1).

Definition 3 Let V be according to previous Defs.
Then we call the operation GBR ◦ V a quantile fil-
tered Bayesian learning rule (QFB).

Before we discuss a desirable property of QFB w.r.t.
contaminations, we would like to recall that GBR
shares this property:

Theorem 1 Let UGBR : Y ⊗ P → R the “up-
dating operator” maximizing the ensuing answer of
Bayesian learning over the class of priors along
GBR, and UGBR the analogue minimization opera-
tor. Then ∀y∈Y UGBR(y,P ∪ Pc) ≤ UGBR(y,P) ≤
UGBR(y,P) ≤ UGBR(y,P ∪ Pc).

This relation simply follows from the fact that the
sup(inf)-operator is monotonous w.r.t. set-extension.



It implies that a contamination Pc would not add spu-
rious information to the posterior result. In general,
such a relation is violated by the two likelihood updat-
ing rules mentioned before, but importantly it holds
for QFB:

Theorem 2 Let UQFB : Y ⊗ P → R the “up-
dating operator” maximizing the ensuing answer of
Bayesian learning over the class of priors along
QFB, and UQFB the analogue minimization opera-
tor. Then ∀y∈Y UQFB(y,P ∪ Pc) ≤ UQFB(y,P) ≤
UQFB(y,P) ≤ UQFB(y,P ∪ Pc).

This Theorem readily follows from the fact that the
way the operator GBR ◦ V acts on P ′ ∈ P does not
depend on the other elements of P . This is in contrast
to the other two likelihood update rules for which the
relative weight (the prior expectation of y) of P ′, com-
pared to the other priors matters. We regard the fact
that those Theorems hold as a key advantage of QFB
and GBR. It now remains to show that QFB is signif-
icantly more informative than GBR in relevant cases.

3 Specification and updating of the
correlation class

3.1 The imprecise prior and the likelihood

In order to keep the discussion as transparent as pos-
sible we decide on the simplest non-trivial P and like-
lihood possible. We consider the uncertain parame-
ter (x1, x2)t ∈ R2, the “observation” or “evidence”
y ∈ R. Furthermore for any element of P , any of its
two marginals should equal N(µ, σ2), a Gaussian with
mean µ and σ2 variance1. A likelihood employed shall
write L(x1, x2) ≡ P (y|x1, x2) := N(κx1 + x2, σ

2
η)(y),

κ known to the modeler. From now on whenever re-
sults are not displayed in analytic form, we choose the
specific parameter values µ = 1/2, σ = 1/4, κ:=1.05
(as κ=1 would lead to a degenerate and |κ| � 1 to a
trivial case [8, 9]), ση := σ/10.

So far we have specified only marginals, hence we
do not rule out multi-modal densities. However we
find the subset of unimodal prior densities more con-
vincing a model for generic prior expert knowledge.
This is conveniently implemented by requiring that
any prior shall be a 2D Gaussian, although admit-
tedly hereby we potentially disregard too many pri-
ors. For pragmatic reasons, however, we stick to this
computationally convenient case for the remainder of
the article. It is shown in [8, 9] that then

1For a multivariate application, the first entry would repre-
sent a vector of means, the second the symmetric covariance
matrix.

Figure 2: Three extreme representatives of the class
of Gaussian priors with prescribed marginals. From
left to right: maximally anticorrelated case (f = −1),
uncorrelated case (f = 0), and maximally correlated
case (f = 1) – for a definition of the parameter f see
Eq. 1).

P = {P | ∃f∈[−1,1] P ∼ N((µ, µ)t,Σ(f))} with (1)

∀f∈[−1,1] Σ(f) := σ2

(
1 f
f 1

)
.

f = 0 represents standard Bayesian updating with
an uncorrelated prior, f = 1 (f = −1) the fully
(anti)correlated prior. Accompanying densities are
displayed in Figure 2.

Finally we select the functional we are interested in –
the probability of ruin:

Definition 4 Let P ∈ P. Let x∗1 ∈ R. Then we
define the probability of ruin as

P ∗ :=
∫∞
x∗1

dx1

∫ +∞
−∞ dx2 P (x1, x2).

In the context of climate modeling, κx∗1 could repre-
sent a well-known critical value of global mean tem-
perature beyond which “catastrophic” global warming
impacts may occur, and x1, x2 two uncertain climate
model parameters.

3.2 Bayesian learning

In order to generate the posterior probability of ruin
per precise prior, the posterior marginal for x1 is key.
In [8, 9] it is shown that
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Figure 3: Probability of ruin (upper and lower) for the
correlation class parameterized by the correlation co-
efficient f ∈ [−1, 1] after Eq. 1 for κ = 1.05, x∗1 = 0.95,
ση = σ/10. Horizontal dotted line: apriori value,
curved dotted: (standard) uncorrelated case, dashed-
dotted: GBR, solid: QFB for Q = 98%, the lower
probabilities of ruin for GBR and QFB coalescing.
GBR reveals quasi non-informative posterior results
for y ∈ [1.3, 1.8]. Quite the contrary the new QFB
is informative for any y ∈ R. For an expanded rep-
resentation of the “avoided crossing” region around
(2,1/2), see the following Figure.

Ppost(x1|y) ∼ N(µ′(f, y), σ′2(f, y)) with (2)

µ′(f, y) = (µ(1− (1− f)(κ− 1) σ2/σ2
η)

+(f + κ) y σ2/σ2
η)

/(1 + (1 + 2fκ+ κ2) σ2/σ2
η),

σ′(f) = σ

√
1 + (1− f2) σ2/σ2

η

1 + (1 + 2fκ+ κ2) σ2/σ2
η

.

We utilize this expression to calculate the posterior
probability of ruin

P ∗apost(f, y) =

∞∫

x∗1

N
(
µ′(f, y), (σ′(f))2

)
(x1) dx1. (3)

From this we obtain the upper probability of ruin in
the case of GBR by

P
∗
apost.GBR(y) = sup

f∈[−1,1]

P ∗apost(f, y). (4)

For QFB we need to define generator of a Q-filtered
Bayesian update rule Y . As larger y will imply higher
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Figure 4: Expansion of the previous Figure’s center
that shows an “avoided crossing” of the solid lines.
We explain this feature of almost precise posterior
probability in Subsection 3.3 by an approximate sym-
metry in the transfer function (x1, x2)→ y in combi-
nation with Gaussian symmetry.

probabilities of ruin in general, we expect that the fol-
lowing prescription will lead to informative posteriors
(0 < Q < 1):

∀f∈[−1,1[ Y(f) := ]−∞, ymax(f)] with (5)

Q =:

ymax(f)∫

−∞

dy Py;f.prior(y) and

Y(f = 1) := ]−∞,∞[ (6)

Let V be the filter generated by Y . Then latter equa-
tion ensures that for all y, V(y) 6= ∅ (for a more ex-
tended discussion the reader is put off to the more
“philosophical” Subsection 5.3 – here we just point to
Theorem 1 which ensures that no spurious informa-
tion is added when making a class of priors, subject
to GBR, larger). In order to operationalize Eq. 5 we
need Py;f.prior. In [8, 9] we show

Py;f.prior ∼ N(µ(1 + κ), σ2(1 + 2κf + κ2) + σ2
η). (7)

Then

P
∗
apost.QFB(y) = sup

f∈f(V(y))

P ∗apost(f, y) (8)

if f(V(y)) denotes the set of f -values needed to pa-
rameterize V(y). (For P apost, “sup” is to be replaced
by “inf” in above equations.)



We do not claim that our choice of Y generates the
most informative QFB. Here we just would like to
demonstrate that even a rather unsophisticated choice
leads to much more informative results than GBR
does.

The dependency of the probability of ruin on y is de-
picted in Figure 3 for GBR (dashed-dotted curves for
upper and lower probability of ruin), the new QFB
(solid curves) under a choice of Q = 98%, for compar-
ison also the assumption of independent parameters
(uncorrelated case f = 0).

We observe that in general QFB is much more in-
formative than GBR – i.e. the difference of upper
and lower probability of ruin is smaller for QFB
than for GBR. A bizarre feature can be observed for
QFB however: the upper probability of ruin is not
a monotonous function of y, a feature occurring in
an even more pronounced way for the maximum like-
lihood update rule [8, 9]. There we attribute this
to a certain degenerate feature within P , related to
f = −1 and becoming virulent at y = (κ−1)x∗1+2µ ≈
1.05. We propose that such effects would vanish if
a non-parametric class of priors were considered. A
skeptic of our new method may now argue that also
the superiority of QFB over GBR as displayed in Fig-
ure 3 may be a result of degenerate priors and would
vanish under more regular imprecise priors. In the
following Section we show that this is not the case,
but QFB is robustly more informative even when we
“regularize”P . Before that, however, we would like to
interpret the striking convergence of QFB-upper and
lower probability of ruin to the value 1/2 as displayed
in Figure 3.

3.3 An “avoided crossing” for QFB

The fact that we use a Gaussian class of priors leads to
a series of peculiar phenomena of which the “avoided
crossing” of upper vs. lower solid curve at ∼ (2, 1/2)
in Figure 3 may be of special interest. For readers that
would like to focus more on the general statements of
this article we suggest that they skip this Subsection
and proceed directly with Section 4.

The key reason for the almost precise QFB posterior
at y ≈ 2 is easiest accessed in considering the following
double limit of Eq. 3 on the posterior mean

∀f∈]−1,1] ∀y∈R lim
κ→1

lim
ση→0

µ′(f, y;κ, ση) =
y

2
, (9)

i.e. for the whole class, the posteriors will be centered
at y/2 (with differing variances).

This implies that

{y
2

= x∗1
}
⇒
{
∀f∈]−1,1] lim

κ→1
lim
ση→0

P ∗apost(f, y) =
1

2

}
.

(10)

As f = −1 is not element of the volume of confidence
at y/2 = x∗1, from this Eq. we conclude a precise pos-
terior at that y ≈ 2.

We now investigate how this exact prosterior dilutes
into an avoided crossing for κ = 1.05, ση = σ/10 =
1/40. For this, it is important to note that Eq. 3 can
be rewritten as

P ∗apost(f, y) =

y∫

−∞

dy′ N

(
x∗1 − µ0(f)

µ1(f)
,
σ′(f)

µ1(f)

)
(y′),

(11)

whereby the two new functions µ0(f) + yµ1(f) :=
µ′(f, y) are determined by the (in y) linear rela-
tion Eq. 3. From Eq. 11 we learn that for any f ,
P ∗apost(f, y) is an error function in y. Now we de-
duce the analytic form of the lower solid line be-
fore the crossing. After verifying ∂µ′/∂f < 0 (for
y > (1 + κ)µ) and dσ′/df < 0, we conclude that
for given y, P ∗apost(f, y) decreases with f . Hence the
QFB lower bound is generated by the single posterior
P ∗apost(f = 1, y) for y < yc. We define yc as the “cross-
ing value” P ∗apost(f = 1, yc) := 1/2 ⇒ yc ≈ 1.9497,
also compare to Figure 4.

While the lower QFB bound before the crossing is
made up by a single f (i.e. a single prior) in terms
of one single error function, the QFB upper bound
is the envelope of error functions generated accord-
ing to Eq. 11 from different f ’s. This is related to
the fact that the upper bound per y is generated
from the lower bound f− of the interval of confidence
[f−(y), 1] and df−/dy > 0. However, locally in y, the
upper bound can be related to one single f . We find
numerically f−(yc) ≈ 1/2 (in accordance with Fig-
ure 4, QFB excludes the uncorrelated case (dotted
line ⇔ f = 0 /∈ [f−(yc), 1])). We can now address the
following question: what parameters determine the
width of the avoided crossing

∆P ∗apost.QFB.ac := P ∗apost(f−(yc), yc)−
1

2
. (12)

Let ∆f := 1 − f−(yc), i.e. the difference of the QFB
upper bound f to the prior’s f that generates the
QFB lower bound. Utilizing Eq. 11 we then derive in
first order perturbation theory



Figure 5: Extreme cases of priors after bounding the
gradient. Left: f = −f∗, center: f = 0, right: f =
f∗, f∗ ≈ 0.95434. The bound f∗ was chosen such that
the expert “can resolve not more than 5 items per
typical marginal parameter scale” (in our case [0, 1],
spanning 4σ – for details see [8, 9]). For that reason,
the densities displayed in the left and the right panel
are smoother than their counterparts in Figure 2.

lim
ση→0

∆P ∗apost.QFB.ac ≈
1

4
√
π

(κ−1)
x∗1 − µ
σ

√
1−∆f.

(13)

Inserting the values of our example, we obtain
∆P ∗apost.QFB.ac ≈ 0.01, in accordance with the dis-
tance within the crossing displayed in Figure 4. The
last equation also reveals that the avoided crossing
becomes an exact crossing if x1, x2 influence y sym-
metrically, i.e. κ→ 1, in accordance with Eq. 10.

4 Introducing a gradient filter

Following Walley [16] we regard it as meaningful to
bound the gradient of densities within a class of pri-
ors. It is very questionable that in general an expert
will hold such a sophisticated prior knowledge that
bizarre density structures of arbitrary gradient could
be distinguished in her or his brain. For our class this
would imply to disregard priors with too large |f |.
Working with such a “regularized” class of priors
comes with the additional advantage that effects like
those at y = (κ − 1)x∗1 + 2µ ≈ 1.05 may vanish as
our class becomes more similar to a non-parametric,
however, gradient-bounded class which the “impre-
cise community” may find more adequate for generic
expert knowledge in the future.

The question now is how to restrict |f |. Following
[8, 9] we argue that in general, an expert will not be
able to distinguish more than 5 “major blocks” per
parameter dimension. This idea is formalized in [8, 9]
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Figure 6: Upper and lower probabilties of ruin as in
Figure 3, yet for bounded gradients of prior densities
(dashed-dotted lines: GBR, solid lines: QFB, dot-
ted curved line: updated uncorrelated precise prior,
horizontal). Note that even for this class of pri-
ors “regularized” by gradient bounding (equivalent to
|f | ≤ f∗ ≈ 0.95434), QFB is more informative than
GBR.

and leads to the prescription |f | ≤ 0.95434. Figure 5
then represents the bounded-gradient counterpart of
Figure 2. In the long run, this issue must ultimately
be addressed by suitable expert elicitations and so-
cial experiments that would reveal the expert’s “prior
resolution.”

In fact Figure 6 reveals that even after bounding
the density gradient over P QFB stays qualitatively
more informative than GBR. In addition, for this
“regularized imprecise prior” now also QFB responds
monotonously w.r.t. observation y what is more in line
with intuition.

Hence QFB seems to combine both desirable features
discussed in the Introduction: it is informative and
it does not absorb spurious information (Theorem 2).
For that reason we regard it as worthwhile to look for
an interpretation of QFB. (The reader may start using
QFB for pragmatic reasons even if she or he does not
want to follow the assumptions in the interpretation
given below.)

5 Interpretation and nesting of
quantile-filtered Bayesian learning

5.1 Interpretation of QFB

We present one possible interpretation QFB that is
based on the following two assumption:

(1) Any prior class of precise measures specified by an



expert contains “the adequate, yet un-identified” pre-
cise measure for that actual assessment;
(2) when considering the sequence of the expert’s as-
sessments over her or his life and transforming each
“adequate precise prior” to a uniform prior by a suit-
able coordinate transformation, then the sequence of
accordingly transformed “true states of the world” (the
sequence of true parameter values) would behave as
drawn from a uniform distribution.

Assumption 1 reminds of a situation in which a king
needs to listen to a series of agents, knowing that only
one agent has really been sent by the king’s friend
whereas the others are from “false friends”.

Assumption 2 shall be illustrated by a special case
first: suppose an expert performed a series of assess-
ments a1, ..., an, ..., aN , whereby at each assessment
an she or he would be asked for the probability of
whether a certain “true” state of the world sn be-
longed to a certain set Sn. We denote this probabil-
ity as P (sn ∈ Sn) and we assume further that for any
n, the expert would claim P (sn ∈ Sn) = p. We now
imagine that some time will have passed by and in the
corse of history the true nature of s1, ..., sN will have
become public, i.e. the expert’s customers will then
be able to objectively determine the index function
ind(sn ∈ Sn) – that is 1 in case the statement is true
and 0 otherwise. Then Assumption 2 requires that

lim
N→∞

1

N

N∑

n=1

ind(sn ∈ Sn)→ p (14)

in the sense of the law of large numbers. Hence we
require that in a frequentistic sense the expert will
have been neither over- nor under-confident, i.e. the
life-averaged assessment prior p was “adequate.”

Therefore in more general terms, Assumption 2 im-
plies that in a world in which an expert would spec-
ify prior knowledge always as uniform distribution on
[0,1] per assessment, later generations would find the
histogram of true states of the world, the expert had
assessed, converge to that uniform distribution over
the life-span of the expert.

That way, we choose an interpretation of subjective
probability that allows us to treat it not only as epis-
temic uncertainty, but also as aleatoric uncertainty,
i.e., as a stochastic process that governs the rela-
tion of the expert to reality during her or his life.
Those users that could accept such an interpretation
of experts’ knowledge have the chance to interpret the
combination of “choose the parameter” and “predict,
given that parameter, the measurement y” as a joint
stochastic process. If the former is described by P (x)
and the latter by P (y|x), then, given the expert’s P :
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Figure 7: Nesting the classical volume of confidence V
in a decision situation. In our frequentist’s interpreta-
tion we can explicitly take care of the possibility that
V may not contain the adequate prior. For that we
utilize a probability tree, resulting in Eqs. 15 and 16.

P (y) =
∫
dx P (x) P (y|x).

As in our interpretation, for any prior, P (y) is gen-
erated by a stochastic process, it must be possible to
evaluate the elements within the set of priors on the
basis of the measurement utilizing frequentistic statis-
tics. In particular we are interested in defining a clas-
sical volume of confidence within the set of priors as
a filter, conditioned on y.

By construction V of Definition 2 is such a classical
volume of confidence with the confidence value Q. Q
can then be interpreted as follows: it represents a (life-
time averaged) lower bound for the relative frequency
that an expert does include the “adequate” precise
prior in V ⊂ P in case for any inference situation
such an “adequate prior” exists.

Given this interpretation we can make use of the fact
that upper (lower) posterior probabilities of the event
we are interested in are bounded functionals over P
and ask whether we can somehow also account for
those cases in which V fails, i.e. does not contain the
“adequate prior”.

5.2 Proposing a nesting formula

One may now ask how a decision-maker may deal with
the fact that the volume of confidence does not hold
with certainty but only with probability Q. If Q ≈ 1,
in many applications of classical tests, this aspect is
simply ignored and the volume of confidence is dealt
with as if it were certain.

However, here we would like to suggest an exact ap-



proach that explicitly takes care of those cases for
which the volume of confidence fails, appearing with
probability (1 − Q). We “nest” the classical un-
certainty (1 − Q) into the Bayesian scheme by a
probability-tree argument (see Figure 7).

Let P ∗+ and P ∗− the upper and lower probabilities of
ruin derived, after the quantile filter has been applied
before GBR. In case 1, the classical volume was cor-
rect, and P

∗
apost = P ∗+, being true with probability Q.

In case 2, the classical volume was wrong, and we set
P
∗
apost = 1 as a conservative estimate of that quan-

tity, with probability (1 − Q). (Analogously we can
proceed with the lower probability of ruin.)

According to the thereby induced tree diagram,

P ∗apost.QFB.nest = Q · P ∗− + (1−Q) · 0, (15)

P
∗
apost.QFB.nest = Q · P ∗+ + (1−Q) · 1. (16)

In the following, we will call the upper and lower prob-
abilities of ruin “nested”.

In case one subscribed to the two assumptions given
in the beginning of this Section, one could interpret
P ∗apost.QFB.nest and P

∗
apost.QFB.nest as upper and lower

bounds for relative frequencies of “ruins” over a se-
quence of equivalent assessments, in the limit of large
numbers (of assessments). To the best of our knowl-
edge, this is the first time the incompleteness of inter-
val estimates is addressed.

5.3 Treatment of an empty V(y)

How to proceed if y is such an “outlier” that V(y) =
∅? One could proceed in saying that no expert were
available, hence there were no information on P ∗apost.
However, that lack of posterior information is counter-
intuitive. If the quantile filter is used together with
GBR, we know that adding a prior to the class does
not result in spurious information. Hence if V(y) = ∅
we could add a prior Pa from the original class that is
most informative, e.g. the maximum likelihood prior.
No spurious information is added by re-introducing
Pa due to Theorem 1. This is exactly the argument
that was used when setting up Eq. 6.

We would like to illustrate what updating of the im-
precise prior with our new rule QFB may mean in a
decisions situation. Hence, before presenting the im-
plementation of above combinations of learning rules
and filters, we now introduce a stylized potential user
of our ideas.
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Figure 8: Inverting Figure 6: reading from a pre-
scribed maximum probability of ruin (horizontal line)
the accompanying maximum y∗, as needed for the
stylized insurance problem. As against Figure 6, here
we have involved the nesting correction for QFB, that
amounts, however, only to an upwards shift of 0.02.
We observe that according to QFB clients with char-
acteristic y ∈ [1.34, 1.66] could be insured in addition
to GBR.

6 Various updating rules for a
stylized insurance situation

Following [8, 9] we consider an admittedly rather
stylized insurance company that plans to insure a
fixed number of clients J each of which comes with
a potential standard loss of 1, the behaviorally iden-
tical clients’ willingness to pay (for a premium) of
2−1+1/αp1/α, α := 3, for the upper probability of ruin
per client p. If the company asks for a residual up-
per probability for bankrupt, i.e. net loss, of 0.1%,
then in a Gaussian approximation we obtain as upper
probabilities of ruin allowed per client: 0.12927417 or
0.27004601 for J = 30 or J = 100 respectively.

With these numbers we enter the ordinate in Fig-
ure 6 and read the maximum characteristic y∗ per
client with which that client would still be insured.
Within that Figure the concept of a maximum al-
lowed y makes sense as all curves monotonously in-
crease. In Figure 8 we further illustrate this inversion
for the case of 30 clients, i.e. P

∗
apost ≈ 27%. The

only difference is that for QFB we show the nesting-
corrected results according to Eqs. 15 and 16 (for the
upper probability of ruin, this amounts approximately
to an addition of 1−Q = 0.02 that is almost negligi-
ble). Interestingly, clients with much higher y could
be insured according to QFB than according to GBR.

We summarize threshold values y∗ that denote the
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Figure 9: y∗ as upper limit of y’s with which clients
would be insured: Circles: pooling with 30 clients;
crosses: pooling with 100 clients. The abscissa indi-
cates the four learning rules according to the tabu-
lar of this Section. (Any entry for κ = 1.05, x∗1 =
0.95, ση = σ/10, Q = 98%.) According to QFB sig-
nificantly more risky clients could be insured than for
GBR.

maximum y with which a client would get insured in
the following tabular:

J 30 100
updating rule

1 GBR 1.23 1.37
2 QFB after nesting 1.26 1.66
3 QFB before nesting 1.34 1.69
4 uncorrelated prior 1.54 1.72

As expected, the standard Bayesian updating (uncor-
related prior) is found on the optimistic (upper) end of
y∗. Otherwise QFB significantly out-competes GBR
in that it would allow the insurance company to tap
a new class of clients. This tabular is visualized in
Figure 9.

7 Summary and Conclusions

This article introduces a new rule for Bayesian up-
dating of imprecise priors that can be represented by
classes of precise priors. Our quantile-filted Bayesian
learning rule (QFB) disregards those priors that
would see the evidence y outside a certain Q-quantile
before updating along (a modified version of) gener-
alized Bayes’ rule (GBR). The aspect of disregarding

priors in view of the evidence before applying GBR is
along the idea of Gilboa and Schmeidler to consider
only those priors that would maximize prior proba-
bility of y. However, in contrast to their rule, QFB
has the advantage that it does not add spurious in-
formation in case the imprecise prior is contaminated
by a “wrong” precise prior. QFB and GBR share the
latter advantage.

We demonstrate QFB for a (special version of a) class
of precise priors with prescribed marginals and arbi-
trary correlations. Such a class has been motivated
by a recent expert elicitation among modelers work-
ing along issues of climate policy advice in the broad-
est sense. We find that QFB is considerably more
informative than GBR for this class.

This suggests an interpretation of QFB. (The reader
may use QFB on pragmatic grounds even if she or
he would not like to follow the interpretation given
in this paragraph.) One possible interpretation as-
sumes (1) that within the class of priors, one prior is
the – un-identified – “adequate” and (2) that prior
measure can be given a frequentistic interpretation:
the life-averaged successes and failures of an expert.
Then QFB would imply that with probability ≥ Q,
QFB would acknowledge this adequate prior within
the GBR-step. A nesting correction would proba-
bilistically capture the cases if which the adequate
prior would be lost. This is possible as upper and
lower posterior probabilities are bounded functionals
over the set of priors. Hence a nesting-corrected QFB
would reveal upper and lower bounds on frequencies
of events when averaged over the life of an expert.
Remarkably, even after nesting-correcting QFB, QFB
remains much more informative than GBR. Hereby we
would like to stress that our implementation of QFB
is by no means optimized w.r.t. being as informative
as possible. One could further optimize Q together
with the quantile functional.

Finally we illustrate the effects of various updating
rules for the example of a stylized insurance situation.
Under QFB much more risky clients could be insured
compared to GBR.

A skeptic may argue that any updating rule which
disregards precise priors in view of the evidence be-
fore applying GBR would be logically inconsistent,
as the evidence were used twice: firstly, the evidence
is used to disregard priors from then applying GBR.
Secondly, those priors that “have made it,” are again
treated in view of the evidence, namely by standard
Bayes’ rule.

This counter-argument would apply for Gilboa’s and
Schmeidler’s rule as well as for QFB. Such type of
discussion is beyond the scope of this paper, however,



we observe that society very often just behaves like
that: it would listen more carefully to experts (i.e.
precise priors) that have stated the evidence stronger
in advance.

With this article we would like to fuel a discussion
on the adequate update rule when updating classes of
priors: is it allowed to disregard priors in view of the
evidence before Bayesian updating? If yes, what is a
meaningful filter? In addition, subsequent algorithms
are needed to update imprecise priors that are much
more precise on marginals than on (higher order) cor-
relations. Those items seem to be crucial when mod-
eling Bayesian updating of state-of-the-art models in
politically influential modeling areas.

In any case it appears as stimulating and satisfy-
ing to see experts’ relief when not being forced to
specify precise measures but instead much less infor-
mative measures. We regard this observation as a
key motivation for further investments in adequate
imprecise models of prior knowledge and generalized
Bayesian updating. This also implies the use of so-
cial data based choices of non-parametric priors and
subsequent numerics.

Finally, we ultimately understand this constribution
as an invitation to the “imprecise community” to de-
velop a sound axiom system (as suggested by one of
our reviewers) about updating and imprecision (in re-
lation to information).
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