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Abstract

Reasoning with qualitative and quantitative uncer-
tainty is required in some real-world applications [6].
However, current extensions to logic programming
with uncertainty support representing and reasoning
with either qualitative or quantitative uncertainty. In
this paper we extend the language of Hybrid Proba-
bilistic Logic programs [28, 25], originally introduced
for reasoning with quantitative uncertainty, to sup-
port both qualitative and quantitative uncertainty.
We propose to combine disjunctive logic programs
[10, 17] with Extended and Normal Hybrid Proba-
bilistic Logic Programs (EHPP [25] and NHPP [28])
in a unified logic programming framework, to allow
directly and intuitively to represent and reason in the
presence of both qualitative and quantitative uncer-
tainty. The semantics of the proposed languages are
based on the answer set semantics and stable model
semantics of extended and normal disjunctive logic
programs [10, 17]. In addition, they also rely on
the probabilistic answer set semantics and the sta-
ble probabilistic model semantics of EHPP [25] and
NHPP [28].

Keywords. Probabilistic reasoning, probabilistic
logic programming, knowledge representation.

1 Introduction

Reasoning under uncertainty is crucial in most real-
world applications such as planning with uncertain
domains and reasoning about actions with uncertain
effects—such as the actions that arise from robotics in
real-world environments. The literature is rich with
different forms of uncertainty in logic programming.
These forms of uncertainty can be classified into qual-
itative and quantitative models of uncertainty. Quali-
tative uncertainty is represented in logic programming
using disjunctive logic programs [17, 10, 2]. It often
happens that a∨b∨c occurs because we are uncertain
which of these propositions is true [2]. There might

be states of the world where a is true or b is true or
c is true or any combinations of them might also be
true [2]. Quantitative uncertainty is represented in
logic programming by means of different formalisms
including probability theory (see [27] for a survey).
Probabilistic logic programming is motivated by the
need to provide the ability to represent both logical as
well as probabilistic knowledge by logic programs (see
[28] for a survey). The semantics of such frameworks
provide ways to systematically derive logical conclu-
sions along with their associated probabilistic proper-
ties. Although, representing and reasoning with both
forms of uncertainty is needed in some real-world ap-
plications [6], this issue has not been addressed by
the current work in qualitative or quantitative uncer-
tainty in logic programming.

We propose to combine disjunctive logic programs
[10, 2] with Extended and Normal Hybrid Probabilis-
tic Logic Programs (EHPP [25] and NHPP [28]) in
a unified logic programming framework, to allow di-
rectly and intuitively to represent and reason in the
presence of both qualitative and quantitative uncer-
tainty. This is achieved by introducing the notions of
Extended and Normal Disjunctive Hybrid Probabilis-
tic Logic Programs (EDHPP and NDHPP). EDHPP
and NDHPP generalize extended and normal disjunc-
tive logic programs of classical logic programming
[10, 2], respectively, as well as, generalizing EHPP
and NHPP [25, 28]. The semantics of EDHPP and
NDHPP are based on the answer set semantics and
stable model semantics of extended and normal dis-
junctive logic programs [10, 2], as well as the prob-
abilistic answer set semantics and the stable proba-
bilistic model semantics of EHPP and NHPP [25, 28].
The semantics of EDHPP employs the Open World
Assumption, whereas, the semantics of NDHPP em-
ploys the Closed World Assumption. Therefore, any
event represented by a program in NDHPP is asso-
ciated with a probability interval. Any event that
cannot be derived from a program in NDHPP is as-
signed the probability [0, 0], by default. But, an event



that can be derived from the program is assigned
a probability [a, b] 6= [0, 0]. However, in EDHPP
events may not be assigned probability intervals to
represent information incompleteness. If this is the
case we say that the probabilities associated with
these events are unknown or undecidable. We show
that EDHPP naturally subsumes extended disjunc-
tive logic programs[10] and EHPP [25], and NDHPP
naturally subsumes normal disjunctive logic programs
[2] and NHPP [28]. Moreover, we show that the prob-
abilistic answer set semantics of EDHPP is reduced to
the stable probabilistic model semantics of NDHPP.
The importance of that is, computational methods de-
veloped for NDHPP can be applied to the language of
EDHPP. Moreover, we show that EDHPP subsumes
Baral et al.’s answer set programming approach for
probabilistic reasoning with causal Bayes networks
[1]. We show that some commonsense probabilistic
knowledge can be easily represented in EDHPP and
NDHPP.

Another reason why the proposed languages are in-
teresting is that, in addition to allowing represent-
ing and reasoning with both qualitative and quan-
titative uncertainty, they can also be used in some
real-world applications in which quantitative uncer-
tainty needs to be defined over qualitative uncertainty,
where probabilistic measures are assigned over the
possible outcomes of qualitative uncertainty. For ex-
ample, flipping a fair coin leads to a head or tail with
0.5 probability each. This fact can be implicitly rep-
resented as a disjunctive logic program (since both
events are equally likely) as head(coin) or tail(coin)
with {head(coin)} and {tail(coin)} as the possible
answer sets, according to the answer set semantics
[10]. However, the explicit representation of proba-
bilities and the explicit assignment of probabilities to
the possible outcome of flipping the coin cannot be
presented by disjunctive logic programs syntax and
semantics. Moreover, consider if the coin is biased
to the head, where flipping the coin produced a head
with 0.58 probability or a tail with 0.42 probability. In
this case a disjunctive logic program cannot represent
it neither implicitly nor explicitly. On the other hand,
the coin-flipping example cannot be represented intu-
itively and directly in NHPP or EHPP either, since a
corresponding notion of disjunctions is not allowed in
NHPP or EHPP.

1.1 Probabilistic Logic Programming
Approaches

The current work in the literature supports either
qualitative uncertainty [17, 10, 2] or quantitative un-
certainty [12, 18, 23, 24, 29, 19, 20, 21, 4, 15, 16, 3, 27,
28, 25]. The closest to our work are the frameworks

presented in [27, 28, 25, 29, 16, 1].

Hybrid Probabilistic Logic Programs (HPP) [27]
is probabilistic logic programming frameworks that
modifies the original Hybrid Probabilistic Logic Pro-
gramming framework of [4], and generalizes and mod-
ifies the probabilistic annotated logic programming
framework, originally proposed in [19] and further ex-
tended in [20]. Probabilities in [27] are presented as
intervals where a probability interval represents the
bounds on the degree of belief a rational agent has
about the truth of an event. The semantics of HPP
[27], intuitively, captures the probabilistic reasoning
about how likely are the various events to occur. It
was shown that the HPP [27] framework is more suit-
able than [4] for reasoning and decision making tasks.
In addition, it subsumes Lakshmanan and Sadri’s [14]
probabilistic implication-based framework as well as
being a natural extension of classical logic program-
ming. As a step towards enhancing its reasoning ca-
pabilities, the framework of HPP was extended to
cope with non-monotonic negation [28] by introducing
the notion of Normal Hybrid Probabilistic Logic Pro-
grams (NHPP) and to provide two different seman-
tics, namely stable probabilistic model semantics and
well-founded probabilistic model semantics. Further-
more, NHPP was extended to Extended Hybrid Prob-
abilistic Logic Programs (EHPP) [25] to cope directly
with classical negation as well as non-monotonic nega-
tion to allow reasoning in the presence of incomplete
knowledge.

In [28], it was shown that the relationship between
the stable probabilistic model semantics and the well-
founded probabilistic model semantics of NHPP pre-
serves the relationship between the stable model se-
mantics and the well-founded semantics for normal
logic programs [8]. More importantly, the stable prob-
abilistic models semantics naturally extends the sta-
ble model semantics [9] of normal logic programs and
the well-founded probabilistic model semantics natu-
rally extends the well-founded semantics [8] of normal
logic programs. A consequence of this is that efficient
algorithms and implementations for computing those
semantics can be developed by extending the existing
efficient algorithms and implementations for comput-
ing the stable model semantics and the well-found se-
mantics for normal logic programs, e.g., SMODELS
[22]. However, NHPP is developed to represent and
reason in the presence of quantitative uncertainty.

However, in [25], it was shown that EHPP explic-
itly encodes negative information, which is important
to provide the capability to reason with incomplete
knowledge. The semantics of EHPP relies on a prob-
abilistic generalization of the answer set semantics,
originally developed for extended logic programs [10].



The probabilistic answer set semantics of EHPP nat-
urally extends the answer set semantics for classical
extended logic programs [10]. Moreover, it was shown
that Baral et al.’s probabilistic logic programming ap-
proach for reasoning with causal Bayes networks (P-
log) [1] is naturally subsumed by EHPP. Furthermore,
it was shown that the probabilistic answer set seman-
tics of EHPP is reduced to the stable probabilistic
model semantics of NHPP proposed in [28]. The im-
portance of that is computational methods developed
for NHPP can be applied to the language of EHPP.
Moreover, it was described in [25] that some com-
monsense probabilistic knowledge can be easily rep-
resented in EHPP. Similar to NHPP, EHPP is used to
represent and reason in the presence of quantitative
uncertainty.

Although [29] allows disjunctions in the head of rules,
the probabilistic logic programming framework in [29]
is used to represent and reason with quantitative un-
certainty to reason with Bayes networks. In addi-
tion, EDHPP (NDHPP) is more expressive than [29],
since, for example EDHPP, unlike [29], allows classical
negation, non-monotonic negation, different modes of
probabilistic combinations (since [29] considers inde-
pendence of probabilities which is a fixed mode of
probabilistic combination), and compound events to
appear in the body of rules, as well as, Bayes reason-
ing and representation.

Similar to [29], another approach for probabilistic
logic programming has been provided in [16] for quan-
titative uncertainty reasoning. In [16], a possible
world semantics for reasoning about probabilities has
been introduced by assigning probabilistic measures
over the possible worlds using normal disjunctive logic
programs. A probabilistic logic program in [16] con-
sists of a set of normal disjunctive logic program
clauses with associated probabilities. A normal dis-
junctive clause in [16] is treated as a classical for-
mula with an associated probability, where the im-
plication in such a clause is treated as material im-
plication. In addition, an approximate semantics for
probabilistic logic programming in [16] has been pre-
sented, where probabilities are treated as a lattice
of truth values. In this case, the probability of a
conjunction Prob(A ∧ B) = min(Prob(A), P rob(B))
and the probability of a disjunction Prob(A ∨ B) =
max(Prob(A), P rob(B)). This is considered a fixed
mode of combination. Whereas, in our framework
conjunctions and disjunctions are treated differently
according to the type of dependency between events.
In addition, unlike [16], we allow classical negation
and compound events to appear in the body of rules.

A logical approach has been presented in [1] to rea-
son with causal Bayes networks by considering a body

of logical knowledge, by using the answer set seman-
tics of classical answer set programming [10]. Al-
though, full answer set programming (logic programs
with classical negation, non-monotonic negation, and
disjunctions) is used, the probabilistic logic program-
ming framework in [1] is used to reason in the pres-
ence of quantitative uncertainty. Answer set seman-
tics [10] has been used to emulate the possible world
semantics. Probabilistic logic programs of [1] is ex-
pressive and straightforward and relaxed some restric-
tions on the logical knowledge representation part ex-
isted in similar approaches to Bayesian reasoning, e.g.,
[12, 18, 23, 24, 29]. Since [19, 20, 21, 4] provided a
different semantical characterization to probabilistic
logic programming, it was not clear that how these
proposals relate to [1]. However, the work presented
in this paper and [28, 25], which are modification and
generalization of the work presented in [19, 20, 21, 4],
are closely related to [1]. The framework presented
in this paper, as well as the framework of [25], is
strictly syntactically and semantically subsumes prob-
abilistic logic programs of [1]. This can be argued
by the fact that EDHPP naturally extends classi-
cal extended disjunctive logic programs with answer
set semantics [10], and probabilistic logic programs
of [1] mainly rely on extended disjunctive logic pro-
grams with answer set semantics [10] as a knowledge
representation and inference mechanism for reason-
ing with causal Bayes networks. In this sense, the
comparisons established between [1] and the existing
probabilistic logic programming approaches such as
[12, 18, 23, 24, 29, 19, 20, 21, 4, 15, 16, 3] also carry
over to EDHPP and these approaches. In addition,
unlike [1], EDHPP does not put any restriction on
the type of dependency existing among events.

1.2 Paper Organization

This paper is organized as follows. Sections 2 and
3 describe the syntax, stable probabilistic model se-
mantics of NDHPP, and the probabilistic answer set
semantics of EDHPP. Finally, conclusions with some
perspectives are presented in section 4.

2 Syntax

In this section we introduce the basic notions asso-
ciated to the languages of EDHPP and NDHPP de-
scribed throughout the rest of the paper [4, 28, 25].
EDHPP (NDHPP) is EHPP (NHPP) with disjunc-
tions of annotated literals (atoms) in the head of rules.



2.1 Probabilistic Strategies

Let C[0, 1] denotes the set of all closed intervals in
[0, 1]. In the context of EDHPP, probabilities are
assigned to primitive events (literals) and compound
events (conjunctions or disjunctions of literals) as in-
tervals in C[0, 1]. Let [α1, β1], [α2, β2] ∈ C[0, 1]. Then
the truth order asserts that [α1, β1] ≤t [α2, β2] iff
α1 ≤ α2 and β1 ≤ β2. The set C[0, 1] and the relation
≤t form a complete lattice. The type of dependency
among the primitive events within a compound event
is described by probabilistic strategies, which are ex-
plicitly selected by the user. We call ρ, a pair of func-
tions 〈c,md〉, a probabilistic strategy (p-strategy),
where c : C[0, 1] × C[0, 1] → C[0, 1], the probabilistic
composition function, which is commutative, associa-
tive, monotonic w.r.t. ≤t, and meets the following
separation criteria: there are two functions c1, c2

such that c([α1, β1], [α2, β2]) = [c1(α1, α2), c2(β1, β2)].
Whereas, md : C[0, 1] → C[0, 1] is the maximal in-
terval function. The maximal interval function
md of a certain p-strategy returns an estimate of
the probability range of a primitive event, e, from
the probability range of a compound event that
contains e. The composition function c returns the
probability range of a conjunction (disjunction) of
two events given the ranges of its constituents. For
convenience, given a multiset of probability intervals
M = {{[α1, β1], . . . , [αn, βn]}}, we use cM to denote
c([α1, β1], c([α2, β2], . . . , c([αn−1, βn−1], [αn, βn])) . . .).
According to the type of combination among events,
p-strategies are classified into conjunctive p-strategies
and disjunctive p-strategies. Conjunctive (disjunc-
tive) p-strategies are employed to compose events
belonging to a conjunctive (disjunctive) formula
(please see [4, 27] for the formal definitions).

2.2 The Languages of EDHPP and NDHPP

Let L be an arbitrary first-order language with finitely
many predicate symbols, function symbols, constants,
and infinitely many variables. In addition, let S =
Sconj∪Sdisj be an arbitrary set of p-strategies, where
Sconj (Sdisj) is the set of all conjunctive (disjunctive)
p-strategies in S. The Herbrand base of L is denoted
by BL. A literal is either an atom a or the nega-
tion of an atom ¬a, where ¬ is the classical nega-
tion. We denote the set of all literals in L by Lit.
More formally, Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}.
An annotation denotes a probability interval and it
is represented by [α1, α2], where α1, α2 are called an-
notation items. An annotation item is either a con-
stant in [0, 1], a variable (annotation variable) ranging
over [0, 1], or f(α1, . . . , αn) (called annotation func-
tion) where f is a representation of a monotonic total
function f : ([0, 1])n → [0, 1] and α1, . . . , αn are an-

notation items.

The building blocks of the language of EDHPP are hy-
brid literals. Let us consider a set of literals l1, . . . , ln
and the p-strategies ρ and ρ′. Then l1 ∧ρ . . . ∧ρ ln
and l1∨ρ′ . . .∨ρ′ ln are called hybrid literals. A hybrid
literal L is ground if each literal li in L is ground.
bfS(Lit) is the set of all ground hybrid literals formed
using distinct literals from Lit and p-strategies from
S, such that for any collection of equivalent hybrid lit-
erals, Y = {l1 ∗ρ l2 ∗ρ . . . ∗ρ ln, l2 ∗ρ l1 ∗ρ . . . ∗ρ ln, . . .},
where ∗ ∈ {∧,∨}, only one li1 ∗ρ li2 ∗ρ . . . ∗ρ lin

∈ Y is
in bfS(Lit). An annotated hybrid literal is an expres-
sion of the form L : µ, where L is a hybrid literal and
µ is an annotation. Note that any hybrid literal L
can be represented in terms of another hybrid literal
L′ such that L = ¬L′, since ¬¬a = a, (a1 ∧ρ a2) =
¬(¬a1 ∨ρ ¬a2) and (a1 ∨ρ′ a2) = ¬(¬a1 ∧ρ′ ¬a2) and
∧ρ,∨ρ,∨ρ′ , and ∧ρ′ are associative and commutative.

However, the building blocks of the language of
NDHPP are hybrid basic formulae. Let us consider
a collection of atoms a1, . . . , an and the p-strategies
ρ and ρ′. Then a1 ∧ρ . . . ∧ρ an and a1 ∨ρ′ . . . ∨ρ′ an

are called hybrid basic formulae. A hybrid basic for-
mula F is ground if each atom Ai in F is ground.
bfS(BL) is the set of all ground hybrid basic for-
mulae formed using distinct atoms from BL and p-
strategies from S, such that for any collection of
equivalent hybrid basic formulae, X = {a1 ∗ρ a2 ∗ρ
. . . ∗ρ an, a2 ∗ρ a1 ∗ρ . . . ∗ρ an, . . .}, where ∗ ∈ {∧,∨},
only one ai1 ∗ρ ai2 ∗ρ . . . ∗ρ ain

∈ X is in bfS(BL). An
annotated hybrid basic formula is an expression of the
form F : µ where F is a hybrid basic formula and µ
is an annotation.

3 Extended and Normal Disjunctive
Hybrid Probabilistic Logic
Programs

In this section we define the syntax, declarative se-
mantics, the probabilistic answer set semantics of
Extended Disjunctive Hybrid Probabilistic Logic Pro-
grams (EDHPP), and the stable probabilistic model
semantics of Normal Disjunctive Hybrid Probabilistic
Logic Programs (NDHPP).

Definition 1 (Rules) An extended disjunctive hy-
brid probabilistic rule (ed-rule) is an expression of the
form
l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,

not (Lm+1 : µm+1), . . . , not (Ln : µn),
whereas a normal disjunctive hybrid probabilistic rule
(nd-rule) is an expression of the form
A1 : ν1 or . . . or Ak : νk ← F1 : µ1, . . . , Fm : µm,

not (Fm+1 : µm+1), . . . , not (Fn : µn),



where l1, . . . , lk are literals, A1, . . . , Ak are atoms, Li

(1 ≤ i ≤ n) are hybrid literals, Fi (1 ≤ i ≤ n) are hy-
brid basic formulae, and νi(1 ≤ i ≤ k), µi (1 ≤ i ≤ n)
are annotations.

An ed-rulenot is an ed-rule without non-monotonic
negation—i.e., n = m, and a d-rule is an nd-rule
without non-monotonic negation—i.e., n = m.

The intuitive meaning of an ed-rule, in Definition 1,
is that, if for each Li : µi, where 1 ≤ i ≤ m, the
probability interval of Li is at least µi and for each
not (Lj : µj), where m + 1 ≤ j ≤ n, it is not known
(undecidable) that the probability interval of Lj is at
least µj , then there exist at least li, where 1 ≤ i ≤ k,
such that the probability interval of li is at least νi.
However, the meaning of an nd-rule, is that, if for each
Fi : µi, where 1 ≤ i ≤ m, the probability interval of
Fi is at least µi and for each not (Fj : µj), where
m + 1 ≤ j ≤ n, it is not provable that the probability
interval of Fj is at least µj , then there exist at least
Ai, where 1 ≤ i ≤ k, such that the probability interval
of Ai is at least νi.

Definition 2 (Programs) An extended (normal)
disjunctive hybrid probabilistic logic program over S,
ed-program (nd-program), is a pair P = 〈R, τ〉,
where R is a finite set of ed-rules (nd-rules) with p-
strategies from S, and τ is a mapping τ : Lit→ Sdisj

(τ : BL → Sdisj). An extended (normal) disjunc-
tive hybrid probabilistic logic program without non-
monotonic negation is an ed-program (nd-program)
where each rule in the program is an ed-rulenot (d-
rule).

The mapping τ in the above definition associates to
each literal li (similarly for atoms in nd-programs) a
disjunctive p-strategy that will be employed to com-
bine the probability intervals obtained from different
rules having li in their heads. An ed-program (nd-
program) is ground if no variables appear in any of
its rules.

3.1 Satisfaction and Models

In this subsection, we define the declarative semantics
of EDHPP and NDHPP. We define the notions of in-
terpretations, models, and satisfaction of ed-programs
and nd-programs.

Definition 3 A probabilistic interpretation (p-
interpretation) of an ed-program is a partial or total
mapping h : bfS(Lit) → C[0, 1]. A probabilistic
interpretation (p-interpretation) for an nd-program
is a total mapping h : bfS(BL)→ C[0, 1].

Since we allow both an event and its negation to be de-
fined in p-interpretations for ed-programs, more con-

ditions need to be imposed on p-interpretations to
ensure their consistency. This can be characterized
by the following definitions.

Definition 4 A total (partial) p-interpretation h
for an ed-program is inconsistent if there exists
L,¬L ∈ bfS(Lit) (L,¬L ∈ dom(h)) such that

h(¬L) 6= [1, 1]− h(L).

Definition 5 We say a set C, a subset of Lit, is a
set of consistent literals if there is no pair of comple-
mentary literals a and ¬a belonging to C. Similarly,
a consistent set of hybrid literals C∗ is a subset of
bfS(Lit) such that there is no pair of complementary
hybrid literals F and ¬F belonging to C∗.

Definition 6 A consistent p-interpretation h of an
ed-program is either not inconsistent or maps a con-
sistent set of hybrid literals C∗ to C[0, 1].

The notion of truth order can be extended
to p-interpretations of nd-programs. Given p-
interpretations h1 and h2 of an nd-program P , we
say (h1 ≤t h2) ⇔ (∀F ∈ bfS(BL) : h1(F ) ≤t

h2(F )). The set of all p-interpretations of P and
the truth order ≤t form a complete lattice. In ad-
dition, given the p-interpretations h1 and h2 for an
ed-program P ′, we say (h1 ≤o h2) ⇔ (dom(h1) ⊆
dom(h2) and ∀L ∈ dom(h1), h1(L) ≤t h2(L)). The
set of all p-interpretations of P ′ and the partial order
≤o form a complete lattice.

Definition 7 (Probabilistic Satisfaction) Let
P = 〈R, τ〉 be a ground ed-program, h be a p-
interpretation, and
r ≡ l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,

not (Lm+1 : µm+1), . . . , not (Ln : µn).
Then

• h satisfies Li : µi(li : νi) (denoted by h |= Li :
µi(h |= li : νi)) iff Li ∈ dom(h)(lj ∈ dom(h))
and µi ≤t h(Li)(νi ≤t h(li)).
• h satisfies not (Lj : µj) (denoted by h |=
not (Lj : µj)) iff Lj ∈ dom(h) and h(Lj) <t µj

or Lj /∈ dom(h).
• h satisfies

Body ≡ L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |=
Li : µi and ∀(m + 1 ≤ j ≤ n), h |= not (Lj : µj).
• h satisfies Head ≡ l1 : ν1 or . . . or lk : νk (de-
noted by h |= Head) iff there exists at least i
(1 ≤ i ≤ k) such that h |= li : νi.
• h satisfies Head ← Body iff h |= Head when-
ever h |= Body or h does not satisfy Body.
• h satisfies P iff h satisfies every ed-rule in R
and for every literal li ∈ dom(h),



cτ(li){{νi (1 ≤ i ≤ k) | l1 : ν1 or . . . or lk : νk ←
Body ∈ R, h |= Body, and h |= li : νi}} ≤t h(li).

Observe that the definition of probabilistic satisfac-
tion for nd-programs is the same as the definition
of probabilistic satisfaction for ed-programs described
in Definition 7. The only difference is that classical
negation is not allowed in nd-programs, in addition,
p-interpretations of nd-programs are total mappings
from bfS(BL) to C[0, 1].

Definition 8 (Models) A probabilistic model (p-
model) of an ed-program (nd-program), with or with-
out non-monotonic negation, P is a p-interpretation
of P that satisfies P .

Definition 9 (Minimal Models) Let P be an ed-
program (nd-program). A p-model h of P is minimal
w.r.t. ≤o (≤t) iff there does not exist a p-model h′ of
P such that h′ <o h (h′ <t h).

We call a minimal p-model of an ed-program a proba-
bilistic answer set. It is possible to get a probabilistic
answer set of an ed-program, P , and this probabilistic
answer set is inconsistent. If this is the case, we say
P is inconsistent. If P is inconsistent, LIT , where
LIT : bfS(Lit) → [1, 1], is the probabilistic answer
set of P . We adopt this view from the answer set
semantics of classical logic programming [10].

Example 1 Consider the following ed-program
P = 〈R, τ〉, without non-monotonic negation, where
R contains
a : [0.1, 0.2] or ¬b : [0.15, 0.3]
¬c : [0, 0.21] ← a : [0.1, 0.13]
d : [0.12, 0.18] ← ¬b : [0.1, 0.21]
¬d : [0.45, 0.55] ← a : [0, 0.15],¬b : [0.02, 0.22],

¬c : [0.1, 0.1]
and τ is any arbitrary assignment of disjunctive
p-strategies. It is easy to verify that P has two
probabilistic answer sets h1 and h2, where
h1(a) = [0.1, 0.2] h1(¬ c) = [0, 0.21] and
h2(¬ b) = [0.15, 0.3] h2(d) = [0.12, 0.18].

3.2 Probabilistic Answer Set and Stable
Probabilistic Model Semantics

In this subsection we define the probabilistic answer
set and the stable probabilistic model semantics of ed-
programs and nd-programs respectively. The seman-
tics are defined in two steps. First, we guess a prob-
abilistic answer set (stable probabilistic model) h for
a certain ed-program (nd-program) P , then we define
the notion of the probabilistic reduct of P with re-
spect to h. The probabilistic reduct is an ed-program
(nd-program) without non-monotonic negation. Sec-
ond, we determine whether h is a probabilistic answer

set (stable probabilistic model) for P . This is verified
by determining whether h is a probabilistic answer
set (minimal p-model) of the probabilistic reduct of
P w.r.t. h.

Definition 10 (Probabilistic Reduct) Let P =
〈R, τ〉 be a ground ed-program (nd-program) and h be
a p-interpretation. The probabilistic reduct Ph of P
w.r.t. h is Ph = 〈Rh, τ〉 where:

Rh =


l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm |

l1 : ν1 or . . . or lk : νk ← L1 : µ1, . . . , Lm : µm,
not (Lm+1 : µm+1), . . . , not (Ln : µn) ∈ R and
∀(m + 1 ≤ j ≤ n), h(Lj) <t µj or Lj /∈ dom(h)

Note that the definitions of the probabilistic reduct
for ed-programs and nd-programs are similar. Except
that classical negation is not allowed in nd-programs.
In addition, p-interpretations in nd-programs are to-
tal mappings from bfS(BL) to C[0, 1], therefore, for
nd-programs, the condition Lj /∈ dom(h) is not appli-
cable.

The probabilistic reduct Ph is an ed-program (nd-
program) without non-monotonic negation. For any
not (Lj : µj) in the body of r ∈ R with h(Lj) <t

µj means that it is not known (not provable for nd-
program) that the probability interval of Lj is at least
µj given the available knowledge, and not (Lj : µj)
is removed from the body of r. In addition, for ed-
program, if Lj /∈ dom(h), i.e., Lj is undefined in h,
then it is completely not known (undecidable) that
the probability interval of Lj is at least µj . In this
case, not (Lj : µj) is also removed from the body of
r. If µj ≤t h(Lj) (similarly for nd-programs), then
we know that the probability interval of Lj is at least
µj and the body of r is not satisfied and r is trivially
ignored.

Definition 11 A p-interpretation h of an ed-program
(nd-program) P is a probabilistic answer set (stable
probabilistic model) of P if h is a minimal p-model of
Ph.

The domain of a probabilistic answer set of an ed-
program or a stable probabilistic model of an nd-
program represents an agent set of beliefs. However,
the probability intervals associated to these beliefs
bound the agents belief degrees on these beliefs. ed-
programs without classical negation (nd-programs),
i.e., ed-programs that contain no negative literals nei-
ther in head nor in the body of ed-rules, have proba-
bilistic answer sets with hybrid literals consist of only
atoms (hybrid basic formulae). Moreover, the defini-
tion of probabilistic answer sets coincides with the def-
inition of stable probabilistic models for nd-programs.
This means that the application of the probabilistic
answer set semantics to nd-programs is reduced to the



stable probabilistic model semantics for nd-programs.
However, there are a couple of main differences be-
tween the two semantics. A probabilistic answer set
may be a partial p-interpretation, however, a stable
probabilistic model is a total p-interpretation. In ad-
dition, each hybrid basic formula F with probability
interval [0,0] in a stable probabilistic model of an nd-
program corresponds to the fact that the probability
interval of F is unknown, and hence undefined, in its
equivalent probabilistic answer set.

Proposition 1 Let P be an ed-program without clas-
sical negation. Then h is a probabilistic answer set
for P iff h′ is a stable probabilistic model of P , where
h(F ) = h′(F ) for each h′(F ) 6= [0, 0] and h(F ) is
undefined for each h′(F ) = [0, 0].

Proposition 1 suggests that there is a simple reduction
from ed-programs to nd-programs. The importance
of that is, under the consistency condition, compu-
tational methods developed for nd-programs can be
applied to ed-programs.

Example 2 Consider the following example adapted
from [11]. Tom and Fred are two policemen who are
challenging their firing gun skills, by shooting a bot-
tle at a quite long distance. In one of the shoots,
at the same time, both Tom and Fred shoot a bottle
and the bottle shattered. In fact, we cannot deter-
mine whether Tom or Fred is the one who shattered
the bottle. However, from Tom’s shooting experience
on similar targets at similar distances, Tom is capable
of hitting targets with probability interval from 75% to
80%. Similarly, Fred can hit similar targets with prob-
ability interval from 72% to 87%. Normally, a shooter
shoots a target. If a shooter sneezes while shooting, it
is an exception. Hence, a shooter’s shoot is abnormal
with probability interval from 30% to 65% if a shooter
sneezes while shooting. It was heard that somebody
sneezed, however, we do not know whether Tom or
Fred is the one who sneezed. A shooter shatters a
bottle with probability interval from 82% to 90% if a
shooter is capable of hitting similar targets with prob-
ability interval from 70% to 79%, and it is not known
that a shooter’s shoot is abnormal with probability in-
terval from 30% to 60%. This can be represented by
the following ed-program P = 〈R, τ〉, where R con-
tains:

sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, X) : [0.3, 0.65]← shoot(X) : [1, 1],

sneeze(X) : [1, 1]
shatter(X) : [0.82, 0.9]← hit(X) : [0.7, 0.79],

not (ab(shoot, X) : [0.3, 0.6])
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←
hit(tom) : [0.75, 0.8]←
hit(fred) : [0.72, 0.87]←

and τ is any arbitrary assignment of disjunctive p-
strategies. The ed-rules in Example 2 encode two
forms of uncertainty. Qualitative uncertainty repre-
sented by the first ed-rule that arises from the fact
that we do not know whether Tom or Fred is the
one who sneezed. And quantitative uncertainty rep-
resented by the probability intervals associated to the
various events presented in R. The probability in-
terval [1, 1] represents the truth value true. There-
fore, the rule sneeze(tom) : [1, 1] or sneeze(fred) :
[1, 1]← is intuitively interpreted as a disjunctive rule
in classical disjunctive logic programming. The above
ed-program P has two probabilistic answer sets h1

and h2, where

h1(sneeze(fred)) = [1,1]
h1(ab(shoot, fred)) = [0.3,0.65]
h1(shatter(tom)) = [0.82, 0.9]
h1(shoot(tom)) = [1,1]
h1(shoot(fred)) = [1,1]
h1(hit(tom)) = [0.75,0.8]
h1(hit(fred)) = [0.72,0.87]

h2(sneeze(tom)) = [1,1]
h2(ab(shoot, tom)) = [0.3,0.65]
h2(shatter(fred)) = [0.82, 0.9]
h2(shoot(tom)) = [1,1]
h2(shoot(fred)) = [1,1]
h2(hit(fred)) = [0.72,0.87]
h2(hit(tom)) = [0.75,0.8]

For example, h1 can be verified as a probabilistic an-
swer set of P by computing the probabilistic reduct,
Ph1 = 〈Rh1 , τ〉, of P w.r.t. h1, where Rh1 contains
sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, tom) : [0.3, 0.65]← shoot(tom) : [1, 1],

sneeze(tom) : [1, 1]
ab(shoot, fred) : [0.3, 0.65]← shoot(fred) : [1, 1],

sneeze(fred) : [1, 1]
shatter(tom) : [0.82, 0.9]← hit(tom) : [0.7, 0.79]
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←
hit(tom) : [0.75, 0.8]←
hit(fred) : [0.72, 0.87]←

It can be easily seen that h1 is a probabilistic answer
set for Ph1 .



Example 3 Assume that either we believe that Tom
is the one who hit the bottle or we believe that Fred
is the one who hit the bottle. However, if Tom is the
one who hit the bottle he can only hit it with probability
interval from 75% to 80%. Similarly, if Fred is the one
who hit the bottle he can only hit it with probability
interval from 72% to 87%. This means that either
Tom hit the bottle with probability interval from 75%
to 80% or Fred hit the bottle with probability interval
from 72% to 87%. This leads to the following encoding
of the ed-program P = 〈R, τ〉 presented in Example 2,
where R now contains:

hit(tom) : [0.75, 0.8] or hit(fred) : [0.72, 0.87]←
sneeze(tom) : [1, 1] or sneeze(fred) : [1, 1]←
ab(shoot, X) : [0.3, 0.65]← shoot(X) : [1, 1],

sneeze(X) : [1, 1]
shatter(X) : [0.82, 0.9]← hit(X) : [0.7, 0.79],

not (ab(shoot, X) : [0.3, 0.6])
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←

and τ is any arbitrary assignment of disjunctive p-
strategies. The first ed-rule in R presents that quanti-
tative uncertainty (the probability intervals [0.75, 0.8]
and [0.72, 0.87]) can be defined over qualitative un-
certainty, where probabilistic measures are assigned
over the possible outcomes (hit(tom) and hit(fred))
of qualitative uncertainty. The above ed-program P
has four probabilistic answer sets h1, h2, h3, and h4,
where

h1(hit(tom)) = [0.75,0.8]
h1(sneeze(tom)) = [1,1]
h1(ab(shoot, tom)) = [0.3,0.65]
h1(shoot(tom)) = [1,1]
h1(shoot(fred)) = [1,1]

h2(hit(fred)) = [0.72,0.87]
h2(sneeze(fred)) = [1,1]
h2(ab(shoot, fred)) = [0.3,0.65]
h2(shoot(tom)) = [1,1]
h2(shoot(fred)) = [1,1]

h3(hit(tom)) = [0.75,0.8]
h3(sneeze(fred)) = [1,1]
h3(ab(shoot, fred)) = [0.3,0.65]
h3(shatter(tom)) = [0.82, 0.9]
h3(shoot(tom)) = [1,1]
h3(shoot(fred)) = [1,1]

h4(hit(fred)) = [0.72,0.87]
h4(sneeze(tom)) = [1,1]
h4(ab(shoot, tom)) = [0.3,0.65]
h4(shatter(fred)) = [0.82, 0.9]
h4(shoot(tom)) = [1,1]
h4(shoot(fred)) = [1,1]

For example, h3 can be verified as a probabilistic an-
swer set of P by computing the probabilistic reduct,
Ph3 = 〈Rh3 , τ〉, of P w.r.t. h3, where Rh3 contains

hit(tom) : [0.75, 0.8] or hit(fred) : [0.72, 0.87]←
sneeze(tom) : [1, 1]or sneeze(fred) : [1, 1]←
ab(shoot, tom) : [0.3, 0.65]← shoot(tom) : [1, 1],

sneeze(tom) : [1, 1]
ab(shoot, fred) : [0.3, 0.65]← shoot(fred) : [1, 1],

sneeze(fred) : [1, 1]
shatter(tom) : [0.82, 0.9]← hit(tom) : [0.7, 0.79]
shoot(tom) : [1, 1]←
shoot(fred) : [1, 1]←

It can be easily seen that h3 is a probabilistic answer
set for Ph3 .

Now we show that EDHPP and NDHPP naturally
extend EHPP and NHPP respectively.

Proposition 2 The probabilistic answer set seman-
tics of EDHPP is equivalent to the probabilistic an-
swer set semantics of EHPP [25] for all ed-programs
P = 〈R, τ〉 such that ∀ r ∈ R, k = 1. In addition,
the stable probabilistic model semantics of NDHPP is
equivalent to the stable probabilistic model semantics
of NHPP [28] for all nd-programs P = 〈R, τ〉 such
that ∀ r ∈ R, k = 1.

Let us show that the probabilistic answer set seman-
tics of EDHPP and the stable probabilistic model se-
mantics of NDHPP generalize the answer set seman-
tics and the stable model semantics of extended and
normal disjunctive logic programs [2, 10] respectively.
An extended disjunctive logic program P can be rep-
resented as an ed-program P ′ = 〈R, τ〉 where each
extended disjunctive rule

l1 or . . . or lk ← l′1, . . . , l
′
m, not l′m+1, . . . , not l′n ∈ P

can be represented, in R, as an ed-rule of the form

l1 : [1, 1] or . . . or lk : [1, 1]← l′1 : [1, 1], . . . , l′m : [1, 1],
not (l′m+1 : [1, 1]), . . . , not (l′n : [1, 1]) ∈ R

where l1, . . . , lk, l′1, . . . , l
′
n are literals and [1, 1] repre-

sents the truth value true. τ is any arbitrary assign-
ment of disjunctive p-strategies. We call the class of
ed-programs that consists of only ed-rules of the above
form as EDHPP1. Recall that nd-programs are ed-
programs without classical negation. NDHPP1 is the
same as EDHPP1, except that, only atoms (positive
literals) are allowed to appear in rules of the above
form. The following result shows that EDHPP1 and
NDHPP1 subsume classical extended and normal
disjunctive logic programs [2, 10].

Proposition 3 Let P1 be an extended disjunctive
logic program. Then S1

′ is an answer set of P1 iff h1 is
a probabilistic answer of P1

′ ∈ EDHPP1 that corre-



sponds to P1 where h1(l) = [1, 1] iff l ∈ S1
′ and h1(l′)

is undefined iff l′ /∈ S1
′. Let P2 be a normal disjunc-

tive logic program. Then S2
′ is a stable model of P2 iff

h2 is a stable probabilistic model of P2
′ ∈ NDHPP1

that corresponds to P2 where h2(a) = [1, 1] iff a ∈ S2
′

and h2(b) = [0, 0] iff b ∈ BL \ S2
′.

In the following result, we show that EDHPP nat-
urally subsumes the probabilistic logic programming
framework (P-log) of [1]. This means that any P-log
program can be represented as an ed-program. In
[1], a logical approach has been presented to reason
with causal Bayes networks, by considering a body of
logical knowledge, using the answer set semantics of
classical logic programming [1]. Answer set semantics
has been used to emulate the possible world semantics
in [1].

Proposition 4 The language of EDHPP subsumes
P-log, a probabilistic logic programming framework for
reasoning with causal Bayes networks [1].

4 Conclusions and Future Work

We extended Extended and Normal Hybrid Proba-
bilistic Logic Programs [25, 28] to Extended and Nor-
mal Disjunctive Hybrid Probabilistic Logic Programs,
to allow classical negation, non-monotonic negation,
and disjunctions in the head of rules. The extension
is necessary to provide the capability of reasoning in
the presence of both qualitative and quantitative un-
certainty in a unified logic programming framework.
In addition to the ability to assign quantitative un-
certainly over qualitative uncertainty, where proba-
bilistic measures are assigned over the possible out-
comes of qualitative uncertainty. We developed se-
mantical characterizations of the extended languages,
which rely on generalizations of the answer set se-
mantics and the stable model semantics, originally
developed for extended and normal disjunctive logic
programs [10, 2], and the probabilistic answer set se-
mantics and the stable probabilistic model semantics
for Extended and Normal Hybrid Probabilistic Logic
Programs [25, 28]. We showed that the probabilis-
tic answer set semantics of EDHPP naturally gener-
alizes the answer set semantics of extended disjunc-
tive logic programs [10] and the probabilistic answer
set semantics of EHPP [25]. In addition, the stable
probabilistic model semantics of NDHPP generalizes
the stable model semantics of normal disjunctive logic
programs [2] and the stable probabilistic model se-
mantics of NHPP [28]. Furthermore, we showed that
the probabilistic answer set semantics of EDHPP is
reduced to stable probabilistic model semantics of
NDHPP. The importance of that is computational
methods developed for NDHPP can be applied to the

language of EDHPP. Moreover, we showed that some
commonsense probabilistic knowledge can be easily
represented in EDHPP and NDHPP. In addition, we
showed that EDHPP naturally subsumes the proba-
bilistic logic programming framework of [1].

The main topic of future research is to investigate
the computational aspects of the probabilistic an-
swer set semantics of EDHPP and stable probabilis-
tic model semantics of NDHPP—by developing algo-
rithms and implementations for computing these se-
mantics. The algorithms and implementations we will
develop will be based on appropriate extensions of the
existing techniques for computing the answer set (sta-
ble model) semantics for extended (normal) disjunc-
tive logic programs, e.g., DLV [7].
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