
5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007

Minimax Regret Treatment Choice with Finite Samples and
Missing Outcome Data

Jörg Stoye
New York University
j.stoye@nyu.edu

Abstract
This paper uses the minimax regret criterion to ana-
lyze choice between two treatments when one has ob-
served a finite sample that is plagued by missing data.
The analysis is entirely in terms of exact finite sample
regret, as opposed to asymptotic approximations or fi-
nite sample bounds. It thus extends Manski (2007),
who largely abstracts from finite sample problems, as
well as Stoye (2006a), who provides finite sample re-
sults but abstracts from missing data. Core findings
are: (i) Minimax regret is achieved by randomizing
over two rules that were identified in the aforecited
papers. (ii) For every sample size, there exists a suffi-
ciently small (but positive) proportion of missing data
such that if less data are missing, the missing data
problem is ignored altogether and Stoye’s (2006a) re-
sults apply. (iii) For every positive fraction of missing
data, the value of additional observations drops to
zero at a finite sample size. I also provide the de-
cision problem’s value function and briefly touch on
optimal sample design as well as unknown propensity
scores.

Keywords. Minimax regret, missing data, statisti-
cal decision theory, partial identification, treatment
evaluation.

1 Introduction

Consider a planner who has to decide whether to as-
sign a binary treatment — e.g., a medical treatment
or a labor market intervention — to members of some
target population. She can base her choice on observa-
tions of outcomes experienced by a sample of subjects,
some of whom received the treatment and some of
whom served as control group. The signal generated
by these observations has two limitations: First, it is
generated by a finite sample. Second, it is assumed
that some data are missing, that is, a subset of the tar-
get population is not represented in the sample, and
members of this subset may react to treatment differ-

ently from the observable subjects. Thus, the choice
scenario simultaneously generates finite sample prob-
lems (a standard issue in statistics and econometrics)
and problems of incomplete identification (a less stan-
dard issue; see Manski 2003 for a survey).

I analyze this situation using minimax regret with re-
spect to expected outcomes as optimality criterion.
Importantly, the analysis is entirely in terms of exact
finite sample regret, as opposed to asymptotic approx-
imations (as in Hirano and Porter 2005) or bounds on
finite sample quantities (as in Manski 2004). It thus
extends, and connects, Manski (2007), who analyzes
a somewhat more general case but largely abstracts
from finite sample problems, and Stoye (2006a), who
provides finite sample results but abstracts from miss-
ing data.

In fact, both of the aforementioned papers analyze
special cases of the present scenario, and their results
are linked in a specific way here. Stoye (2006a), by ig-
noring missing data, characterizes finite sample min-
imax regret rules for the boundary case where the
proportion of missing data vanishes. Manski (2007)
provides a finite sample minimax regret rule if at least
half the data are missing. The respective solutions
are quite different from each other. The perhaps sur-
prising upshot of this paper is that minimax regret
can generally be achieved by randomizing over them,
where the mixture is degenerate on the previous two
findings’ domains but creates a smooth transition in
between. For the case where the proportion of observ-
able data p is known a priori, two intriguing aspects
of the result are the following:

• For every sample size N , there exists a critical p∗N
such that if p ≥ p∗N , then the presence of missing
data is ignored altogether and the treatment rules
from Stoye (2006a) apply. Those decision rules
therefore have a certain degree of robustness to
missing data.

• The minimax regret value of the decision problem



exhibits nonstandard asymptotic behavior: For
every p, the limiting value of regret is exactly
achieved beyond some finite N . Thus the value
of additional observations drops to zero at some
finite sample size.

If p is not known a priori, minimax regret is achieved
by presuming that p equals the lowest value that the
decision maker considers possible. In particular, if
p cannot be bounded away from zero a priori, then
minimax regret is achieved by a “no-data rule.”

The remainder of this paper is structured as follows. I
first set up the decision problem, introduce notation,
and provide a brief motivation for minimax regret.
The heart of this paper is section 2.2, which provides
relevant results from the aforecited papers and then
their joint generalization. In section 2.3, I show how
to compute the decision problem’s value function, sec-
tion 2.4 briefly discusses optimal sample design, and
section 2.5 considers unknown p. Section 3 concludes,
and the appendix collects all proofs.

2 Analysis of the Treatment Choice
Problem

2.1 Setup and Notation

There is a binary treatment, T ∈ {0, 1}, that must
be assigned, possibly at random, to members of a tar-
get population. Two classic examples are clinical tri-
als, where the target population would be all people
who suffer from a certain condition, T = 1 would de-
note a medical innovation, and T = 0 would be the
status quo treatment, and job training for the un-
employed, where T = 1 would denote training and
T = 0 no training. To model treatment effects, I use
the standard “potential outcomes” notation (Rubin
1974): For every member of the target population,
the random variable Y1 ∈ [0, 1] denotes the outcome
that she would experience if assigned to treatment,
whereas Y0 ∈ [0, 1] is the outcome she would experi-
ence if assigned to the control group.1 Of course, only
one of the two random variables will be actualized; the
other realization remains counterfactual.

The decision maker observed outcomes experienced in
a size N simple random sample from a sample popula-
tion. Members of the sample were assigned treatment
according to some design that will initially be taken as
given; the question of optimal sample design is consid-
ered later. The sample generates an imperfect signal
for two reasons: First, it is finite, and random vari-
ation in observed outcomes will be fully considered.

1The restriction to [0, 1] is w.l.o.g. if, and only if, some
bounds on outcomes are known a priori.

Second, only a subset of the target population is ob-
servable. I model this by presuming that the sample
population is a subset of relative probability mass p
of the target population. Importantly, it is assumed
that while (Y0, Y1) is distributed identically across the
sample population, its distribution in the unobserv-
able part of the target population can be different. A
leading example is if a study was performed on vol-
unteers who might not be fully representative of the
target population. As a consequence, the distribu-
tion of (Y0, Y1) would only be partially revealed even
by an infinitely large sample. This is why the prob-
lem is inherently a decision problem under ambiguity,
and very similar in structure to interval probability
problems as well as robust Bayesian inference. See,
in particular, Manski (2002, 2005). Previous analyses
of the same problem either largely abstracted from
the finite sample problem (Manski 2007) or from the
ambiguity caused by missing data (Stoye 2006a).

To model the problem, let the random variable Z ∈
{0, 1} indicate whether a member of the target popu-
lation is in the sample population (Z = 1) or not (Z =
0). Define the random variables Ytz ≡ (Yt|Z = z) and
write p ≡ Pr(Z = 1), the proportion of observable
subjects in the population. I initially assume that
p is known. Then a state of nature s can be iden-
tified with a true distribution of (Y01, Y00, Y11, Y10).
Assume that a priori bounds on Y0 and Y1 are finite,
coincide, and that there are no restrictions on their
joint distribution, then it is without further loss of
generality to set the state space S equal to ∆([0, 1]4),
the set of distributions over [0, 1]4. Most of the discus-
sion will actually restrict outcomes to be binary, i.e.
set S = ∆

¡
{0, 1}4

¢
, more on which below. It is worth

noting that (Y01, Y00, Y11, Y10) are not restricted to be
independent. I will use the following notational con-
ventions: If Yi is a random variable, then μi denotes
its expectation and yi a sample mean.

The sample is a simple random sample from the sam-
ple population. For any sample point, one treatment
is assigned according to the sample design and the ac-
cording outcome is observed, thus the decision maker
sees realizations (t, yt1). Let SN = ({0, 1} × [0, 1])N ,
with typical element sN , denote the sample space in-
duced by a sample of size N , i.e. the collection of
possible sample realizations. The decision maker has
to choose a treatment rule δ : SN → [0, 1] that maps
possible sample outcomes into probabilities of assign-
ing treatment 1. In particular, she is allowed to ran-
domize. The set of decision rules δ is labelled D.
Any combination of state and decision rule induces an



expected outcome

u(δ, s) ≡ μ1Eδ(sN ) + μ0 (1− Eδ(sN ))
= (pμ11 + (1− p)μ10)Eδ(sN )

+ (pμ01 + (1− p)μ00) (1− Eδ(sN ))

Here, Eδ(sN ) is evaluated given s; although sup-
pressed in the notation, it will also depend on the
sample design. Strictly speaking, u is already a risk
function with respect to an underlying loss function
L(yt) = −yt. I will take for granted that if s were
known, treatments rules would be evaluated accord-
ing to u. With unknown s, the efficacy of δ will be
measured in terms of minimax regret relative to u,
thus a treatment rule δ∗ is optimal if

δ∗ ∈ argmin
δ∈D

½
max
s∈S

R(δ, s)

¾
,

R(δ, s) ≡ max
δ0∈D

©
u(δ0, s)

ª
− u(δ, s).

The minimax regret criterion minimizes worst-case
performance relative to the ex-post optimal expected
outcome or, equivalently, relative to the performance
of an infeasible “oracle” treatment rule that utilizes
full knowledge of E(Y01, Y00, Y11, Y10). Minimax regret
was originally suggested by Savage (1951). In the
present formulation — which is not the only possible
one — it was recently reconsidered in statistics and
related fields (Droge 1998, 2006; Eldar et al. 2003;
Hirano and Porter 2005; Manski 2004, 2005, 2007;
Schlag 2003, 2006; Stoye 2006a, 2007).2 A motivation
for it is that it avoids the imposition of priors and
optimizes against states of the world in which the de-
cision maker’s action has a large effect. This sets it
apart from its main competitors: The Bayesian de-
cision rule requires specification of a subjective prior
over states; maximin utility also avoids priors but op-
timizes against states in which outcomes are very bad,
irrespective of whether they are affected by actions.
For a historical overview and further heuristic as well
as axiomatic discussion, see Stoye (2006b).

Of course, there are many possible sample designs. I
will focus on those considered in Stoye (2006a); they
may serve as stylized models of real-world sampling
schemes and will turn out to be minimax regret opti-
mal. By stratified assignment, I henceforth mean that
N is even and that exactly half of the sample is al-
located to treatment 1. By randomized assignment, I
mean that sample points are assigned to treatments
by independent tosses of a fair coin.

Some comments on this setup are in order.

2Minimax regret is also closely related to the competititve
ratio; indeed, it could as well be called competititve difference.

• In this paper, p cannot depend on t, and N is not
a random variable. The story behind this setting
is that missing data occur before treatments are
assigned, an example being selection of subjects
into experimental pools. Manski (2007) consid-
ers the more general case where attrition from an
experimental pool can be selective by, and poten-
tially in reaction to, treatment assignment. Un-
fortunately, finite sample analysis of this case is
extremely involved, because sample composition
becomes a random variable whose exact distrib-
ution must be taken into account. Although one
specific such case is analyzed below, a general
treatment is left to future research.

• The below results presume binary outcomes, i.e.
Y0, Y1 ∈ {0, 1}. For lemma 2, it will be pointed
out that this is not necessary. For the other cases,
minimax regret treatment rules for Y0, Y1 ∈ [0, 1]
can — under regularity conditions on the state
space — be generated by a technique due to Schlag
(2003, 2006). The trick, which will be called bi-
nary randomization, is to replace every sample
realization yi by the outcome of one independent
toss of a coin with parameter yi and then apply
the below treatment rules to the resulting, binary
samples.

• Covariates are not introduced into this paper’s
notation, but the results immediately extend to
the case of finite-valued covariates by means of
proposition 3 in Stoye (2006a). Specifically, let
there be a covariate X and let the sample be
stratified by covariate, then minimax regret is
achieved by applying the below treatment rules
separately across covariates. For treatment as-
signment conditional on X = x, the treatment
rule therefore utilizes only the subsample with
covariate value x. The surprising aspect of this
is that there is no inference across covariates. See
Stoye (2006a) for an in-depth discussion.

• The decision problem can clearly be interpreted
as an imprecise probability problem. The present
specification respresents a very special case, how-
ever, because complete ignorance about true
probabilities is presumed. Prior information can
be introduced by restricting the state space S, as
is done in Stoye (2006a). This poses no concep-
tual difficulties but may, of course, change com-
putations.

The remainder of the paper is concerned with finding
δ∗ for different decision scenarios. The proofs exploit
the fact that δ∗ can be represented as the decision
maker’s equilibrium strategy in a fictitious zero-sum



game against Nature. This allows one to infer exis-
tence of a minimax regret treatment rule from known
game theoretic results (Glicksberg 1952). Other than
that, it just restates that the minimax regret decision
rule can be characterized as a saddle point, but the
game theoretic interpretation facilitates the import of
heuristics and solution strategies developed by econo-
mists.

2.2 Treatment Rules

The first step is to analyze the aforementioned bound-
ary cases, namely p = 1 and p ≤ 1/2.

Lemma 1 If p = 1, minimax regret is achieved by

δ∗1 ≡

⎧⎨⎩ 0, IN < 0
1/2, IN = 0
1, IN > 0

,

where

IN ≡ #(observed successes of treatment 1)

+#(observed failures of treatment 0)

−#(observed failures of treatment 1)
−#(observed successes of treatment 0)

∝ N1(y11 − 1/2)−N0(y01 − 1/2),

where Nt is the number of sample subjects assigned
to treatment t. For a stratified sample design, this is
equivalent to

δ∗1 ≡

⎧⎨⎩ 0, y11 < y01
1/2, y11 = y01
1, y11 > y01

.

Lemma 2 If p ≤ 1/2, minimax regret is achieved by

δ∗2 ≡
1

2
+

p

2(1− p)

IN
N

.

This applies for either stratified or randomized sample
design; in the former case, it can be rewritten as

δ∗2 ≡
1

2
+

p (y11 − y01)

2(1− p)
=
(py11 + 1− p)− py01

2(1− p)

as in Manski’s (in press) proposition 2.

Lemma 1 is from Stoye (2006a, proposition 1).
Lemma 2 follows from Manski (2007, proposition 2)
for stratified samples but not for randomized ones.
The latter design allows for empty sample cells, a case
that Manski has to exclude. The generalization pre-
sented here is new.

Also, while lemma 2 is here stated for Y0, Y1 ∈ {0, 1},
inspection of the proof reveals that δ∗2 can be extended

to Y0, Y1 ∈ [0, 1] by using the above definition of IN in
terms of (N0,N1, y01, y11). This is not the rule that
would emerge from applying the binary randomiza-
tion technique and then operating δ∗2 on the result-
ing, binary sample; in particular, it randomizes with
probability 0 if (Y01, Y11) has a continuous distribu-
tion. This illustrates that minimax regret treatment
rules need not be unique.

The next lemma and definition set the stage for the
general problem, i.e. p ∈ [0, 1]. From Manski (2007,
see also Stoye 2007), we know a minimax regret deci-
sion rule for the limiting case where the expectations
(μ01, μ11) of (Y01, Y11) are known.

Lemma 3 Let (μ01, μ11) be known, then minimax re-
gret is achieved by

δ∗3 ≡

⎧⎨⎩ 0, δ < 0
δ, 0 ≤ δ ≤ 1
1, 1 < δ

δ ≡ 1

2
+

p

2(1− p)
(μ11 − μ01).

This rule is essentially the population analog of δ∗2; it
just adds a truncation to insure that δ∗3 ∈ [0, 1]. As
final preliminary step, I define its sample analog:

Definition 1 The sample analog of δ∗3 is

δ∗4 ≡

⎧⎨⎩ 0, δ < 0
δ, 0 ≤ δ ≤ 1
1, 1 < δ

δ ≡ 1

2
+

p

2(1− p)

IN
N

.

To accommodate both sample designs, δ∗4 is based on
IN/N rather than (y11 − y01). Of course, these ex-
pressions coincide under the stratified design.

I am now ready to state this paper’s main result.

Theorem 4 Consider any fixed N < ∞ as well as
p ∈ (0, 1]. Then minimax regret is achieved by the
following randomization over δ∗1 and δ

∗
4:

δ∗ ≡
½

δ∗1 with probability α∗

δ∗4 with probability (1− α∗)
,



where

α∗ ≡ min

(
p

2(1−p) −A

B −A
, 1

)

A ≡ 2−N
∗ X
n≥N∗(1− 1

2p )

µ
N∗

n

¶
(2n−N∗)

×min
½
1

2
+

p

2(1− p)

2n−N∗

N∗
, 1

¾
B ≡ 2−N

∗ X
n>N∗/2

µ
N∗

n

¶
(2n−N)

and

N∗ =

½
N, N is odd
N − 1, N is even

.

In particular, α∗ equals 1, and the decision rule there-
fore collapses to δ∗1, iff p ≥ p∗N ≡ 2B

2B+1 . This thresh-
old value converges to 1 as N → ∞. On the other
hand, α∗ equals 0, and the decision rule therefore col-
lapses to δ∗4, iff p ≤ 1/2.
If p = 0, then δ∗ = 1/2.

Substantively, it turns out that minimax regret is
achieved by randomizing over δ∗1 and δ∗4. In words,
the decision maker should toss a (biased) coin and
then use rule δ∗1 if the coin came up head. The ran-
domization parameter α∗ changes with p and N in
interesting ways:3

• For any given N , δ∗4 applies for p ≤ 1/2 and its
weight then decreases, with δ∗1 being attained for
p ≥ p∗N , a value that is strictly below 1. Thus for
every N , a sufficiently small but nonzero mass
of missing data can be ignored. Although p∗N
converges to 1 at rate N−1/2, it significantly dif-
fers from 1 for rather large N , so that δ∗1, which
was developed for fully observable data, exhibits
quite some robustness to missing data.

• For any given p ∈ (1/2, 1), the randomization
changes with N as follows: For N small enough,
the presence of missing data is ignored, i.e. α∗ =
1, but α∗ converges to zero as N grows, so that
the limit rule is approximated (but not attained)
for large N . Again, the convergence of α∗ to 0 is
perhaps surprisingly slow; it is also nonuniform
in p. It should be pointed out, however, that for
anyN , δ∗4 becomes similar to δ

∗
1 as p→ 1; thus, it

does not follow that convergence of the treatment

3MATLAB code that evaluates α∗ is available on the au-
thor’s webpage at http://homepages.nyu.edu/~js3909.

rule to its limit is “slow” (or nonuniform in p) in
every interesting metric.

2.3 Value Function

By evaluating regret on the fictitious game’s equilib-
rium path, one can find the minimax regret achievable
under either treatment assignment rule.

Proposition 5 For either treatment assignment
scheme, the decision problem has minimax regret
value (1− p)/2 if p < p∗N and

max
a∈[1/2,1]

⎧⎨⎩ (2p(a− 1) + 1)

×
P

n<N∗
2

µ
N∗

n

¶
an (1− a)N

∗−n

⎫⎬⎭
otherwise, where N∗ is as in theorem 4. In particular,
if p ≤ 1/2, then the minimax regret value equals (1−
p)/2 for any N .

As in Stoye (2006a) and Schlag (2006), learning only
occurs with every other sample point. Unlike in those
papers, learning is incomplete: As N → ∞, regret
does not converge to zero but to (1 − p)/2. This re-
flects the fact that in the presence of missing data,
even the asymptotic decision problem will generate
positive regret. An especially unusual feature is that
learning occurs only as long as p ≥ p∗N ⇔ α∗ = 1.
When this region of parameter space is left, regret
“locks in” at its limiting value.4 Recall that this oc-
curs for some finite sample size for any p < 1; what’s
more, it is the case for any sample size if p ≤ 1/2.
This insight generalizes Manski’s (2007) finding that
when at least half of the data are missing, minimax
regret is independent of sample size. More generally,
the presence of any missing data whatsoever means
that the limiting decision quality is exactly attained
for some finiteN , and additional observations are use-
less beyond that threshold. At least from an econo-
metrician’s perspective, this finding is unexpected.

2.4 Optimal Sample Design

The preceding analysis took two different sample de-
signs as given. They turn out to generate the same
maximal expected regret whenever both are feasible,
i.e. when N is even. An obvious question is whether
this regret is optimal when sample design is itself a
choice variable. The answer is in the affirmative.

4The intuition is that in the fictitious game, the switch to
α∗ < 1 marks the transition to a pooling equilibrium in which
the signal generated by sample data is noninformative about
the true state of the world. Hence, the decision maker ceases
to learn from the signal.



To formalize this idea, let hn ≡ (ti, yit1)ni=1 denote the
sample history up to realization n (with the under-
standing that h0 = ∅). If assignment of treatments
to sample points is a choice variable, this can be mod-
elled by letting the decision maker choose a vector of
mappings τ = (τn)

N
n=1, where τn(N,hn−1) ∈ [0, 1]

specifies the probability of assigning treatment 1 to
sample point n conditional on history hn−1 in a sam-
ple of overall size N . The randomized assignment
scheme corresponds to τ randn = 1/2,∀n, whereas one
way to realize the stratified sample design is to set
τstratn ≡ I {n is even}. Observe that the sampling
scheme τ may depend on sample history, but that
the decision maker has to specify it before seeing any
sample points. This is a common formalization in
econometrics because it corresponds to the concept
of risk functions in statistical decision theory, but
also because it is often realistic for the problems that
economists consider. For example, assignment to job
training is typically planned by the researcher but exe-
cuted by caseworkers or other third parties. However,
if one wanted to model an online problem, one might
also want to allow the decision maker to re-optimize
τ along the sample path, which does not in general
lead to the same problem.5

Proposition 6 Both τ rand and τstrat (when applica-
ble) are minimax regret optimal assignment schemes.

This result and proposition 3 in Stoye (2006a) jointly
imply that if one faces a random sample from a popu-
lation with a finite-valued covariate and can choose
the sample design, then one can achieve minimax
regret by using the randomized assignment scheme
and applying theorem 4 separately across covariates.
Compared to Manski (2007), this result applies to a
narrower range of missing data scenarios but is more
general on two other dimensions: p may exceed 1/2,
and the treatment scheme is defined even when some
sample cells are empty.

2.5 Treatment Choice with Unknown
Propensity Score

I now turn to the case where p is not known a priori
but has to be learned from the data. Thus, assume
that p can merely be restricted to lie in an interval

5One might think that the difference cannot matter, because
the definition of τ allows the decision maker to prescribe reac-
tions to sample observations. In fact, this depends on how the
decision maker reacts to the arrival of information, that is, on
her updating rule. Under the most intuitive such rule, namely
pointwise Bayesian updating of the state space, both minimax
regret and maximin utility are dynamically inconsistent, mean-
ing that the conjecture is false. What’s more, the present choice
of suppressing updating then appears not only realistic but sen-
sible (e.g., Augustin 2003). Hanany and Klibanoff (2005) pro-
vide an updating rule that renders the conjecture true.

£
p, p
¤
⊆ [0, 1]. The sample size N continues to refer

to the number of observed units. This leaves open
the question of how exactly learning about p happens
as samples are realized. It turns out that this ques-
tion is irrelevant: Minimax regret can be achieved by
presuming that p equals p.

Proposition 7 Consider the setting of theorem 4,
except that p ∈

£
p, p
¤
. Then minimax regret is

achieved by setting p = p and applying δ∗.

The intuition for this result is straightforward: As can
be seen from proposition 6, minimax regret decreases
in p. This is also intuitive since a higher p means that
signals are representative of a larger part of the target
population, and should thus be more informative. It
implies that the worst case scenario is given by p = p.

Proposition 4 has an unsettling implication: If p = 0,
minimax regret is achieved by setting δ∗ = 1/2 irre-
spective of the observed sample, i.e. by a “no-data
rule.” As observed by Savage (1954) and recently by
Manski (2004), Schlag (2003), and Stoye (2006a), no-
data rules are a frequent problem with the maximin
utility criterion. Only Stoye (2006a) previously found
similar problems to arise with minimax regret. Propo-
sition 7 provides another, realistic problem that leads
to a no-data minimax regret treatment rule. It sug-
gests that the issue of no-data rules may not consti-
tute the most compelling argument for minimax re-
gret over maximin utility.

3 Summary and Outlook

This paper added to the recently growing literature on
minimax regret and specifically to research by Manski
(2007) and Stoye (2006a). It provided a joint general-
ization of much of those papers’ analyses by consider-
ing a treatment choice problem where information is
incomplete in two ways, firstly because of finite sam-
ple variation but also, and more fundamentally, be-
cause of missing data and hence incomplete identifi-
cation of population distributions. The core finding is
that results by Manski (2007) and Stoye (2006a) can
be linked in a particular way: Each of them identi-
fies a minimax regret treatment rule for a boundary
case of the present problem, and a smooth transition
between these solutions is generated by randomizing
over them. This insight also strengthens the general
finding that minimax regret tends to prescribe ran-
domization, a point stressed by Schlag (2003, 2006).
The result was extended by presenting the decision
problem’s value function, by allowing for unknown or
partially known propensity scores, and by showing op-
timality of certain sample designs.

Many questions remain open on minimax regret treat-



ment choice. For example, Stoye (2007) generalizes
Manski (2007) in a different direction, namely by al-
lowing for a multi-valued treatment. This general-
ization could be further extended by considering fi-
nite samples. The same remark holds for additional
results that Stoye (2006a) presents with respect to
covariates and the effect of restricting S, as well as
Manski’s (2007) consideration of sample attrition that
may vary by assigned treatment. When designing
sample designs, one could also consider the possibility
that outcomes experienced by the sample subjects are
taken into account when evaluating the design. This
possibility was ignored here for simplicity; it leads to
intricate “bandit” problems as in Schlag (2003).
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A Proofs

Preliminaries Most proofs proceed by analyzing
the following zero-sum game: (i) The decision maker
(DM) chooses a statistical treatment rule δ : θ →
[0, 1], Nature chooses a mixed strategy σ ∈ ∆ (S)
over states. (ii) A neutral meta-player draws s ac-
cording to σ, then θ according to s. (iii) DM’s payoff
is
R
R(δ, s)dσ. This game is useful because of the fol-

lowing fact (e.g., Berger 1985).

Lemma 8 Assume that σ∗ ∈ ∆(S) and δ∗ are such
that (δ∗, σ∗) is a Nash equilibrium of the above game,
that is, δ∗ ∈ argminδ∈D

R
R(δ, s)dσ∗ and σ∗ ∈

argmaxσ∈∆(S)
R
R(δ∗, s)dσ. Then δ∗ is a minimax

regret treatment rule.

Proofs will, therefore, proceed by conjecturing and
then verifying Nash equilibria of the fictitious game
(as also in Schlag 2003, 2006, and Stoye 2006a, 2007).

Lemma 1 See Stoye (2006a, propositions 1 and 2).

Lemma 2 Consider first the randomized treatment
assignment scheme. Assume that DM plays δ∗, then
any P (Y01, Y00, Y11, Y10) in the support of σ∗ must
maximize R(δ∗, s). Expansion of R(δ∗, s) yields

max{(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× E
µ
1

2
+

p

2(1− p)

IN
N

¶
,

(pμ01 + (1− p)μ00 − pμ11 − (1− p)μ10)

× E
µ
1

2
− p

2(1− p)

IN
N

¶
}.

Simple calculations show that distribution of IN de-
pends on P (Y01, Y00, Y11, Y10) only through (μ01, μ11).
Thus R(δ∗, s) depends on P (Y01, Y00, Y11, Y10) only
through (μ01, μ00, μ11, μ10). Furthermore, symme-
try of the two components of the max-operator
means that (μ01, μ00, μ11, μ10) = (a, b, c, d) maximizes
R(δ∗, s) iff (μ001, μ

0
00, μ

0
11, μ

0
10) ≡ (c, d, a, b) does. One

can thus construct a best response to δ∗ by finding
some (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) that maximizes

(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× E
µ
1

2
+

p

2(1− p)

IN
N

¶
and presuming that Nature randomizes evenly be-
tween (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) and its symmetric counter-

part. I will now find (μ∗01, μ
∗
00, μ

∗
11, μ

∗
10) and then ver-

ify that δ∗ is a best response to Nature’s strategy.

In the proof of proposition 1(ii) in Stoye (2006a),
it is established that the distribution of IN depends
on (μ01, μ11) only through μ11 − μ01. Without loss
of generality, I therefore presume that (μ01, μ11) =¡
1−∆
2 , 1+∆2

¢
for some ∆ ∈ [−1, 1]. Observe fur-

thermore that since IN is a sum of N realizations
of an i.i.d. random variable, E(IN/N) = EI1 =
1
2(μ11 − (1 − μ11)) − 1

2 (μ01 − (1 − μ01)) = ∆. Thus,
we can define (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) as maximizer of

(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

×
µ
1

2
+

p(μ01 − μ11)

2(1− p)

¶
.

Clearly this requires that μ∗10 = 1, μ
∗
00 = 0, and that

∆∗ ≡ μ∗11 − μ∗01 maximize

(p∆+ 1− p)×
µ
1

2
+

p∆

2(1− p)

¶
=
1− p

2
− p2∆2

2(1− p)
,

which obtains whenever ∆ = 0 ⇔ μ01 = μ11. It fol-
lows that under Nature’s best response, observations
of Y01 and Y11 are uninformative, and the decision
maker is indifferent between all treatment rules. In
particular, δ∗ is a best response.

The proof is essentially the same for stratified sam-
pling. In that case, EIN can be directly written as
linear function of (μ01, μ11), so that proposition 1(ii)
from Stoye (2006a) need not be invoked.

Lemma 3 Follows from Manski (2007, proposition
1); see also Stoye (2007, corollary 1).

Theorem 4 I restrict attention to the randomized
treatment assignment scheme and also assume N to
be odd; the extension to stratified sampling as well
as even N follows along the lines of proposition 1



in Stoye (2006a). The core idea is to restrict DM’s
(pure) strategy space to {δ∗1, δ∗4}, rendering the game
more tractable. Of course, it must be shown that
equilibria of the simplified game are also equilibria of
the original one. Thus, identify DM’s strategy with
α ∈ [0, 1], the probability with which δ∗1 is played.
As in lemma 2, the distribution of δ∗ depends on s
only through ∆ ≡ μ11 − μ01. Nature will therefore
pick (μ∗01, μ

∗
00, μ

∗
11, μ

∗
10) ∈ [0, 1]4 to maximize R(α, s),

which can be expanded to

max{(pμ11 + (1− p)μ10 − pμ01 − (1− p)μ00)

× (1− αf1(μ11 − μ01)− (1− α)f0(μ11 − μ01)),

(pμ01 + (1− p)μ00 − pμ11 − (1− p)μ10)

× (αf1(μ11 − μ01) + (1− α)f4(μ11 − μ01))},

where
fi(d) ≡ E(δ∗i |μ11 − μ01 = d).

Some observations from the proof of lemma 2 apply:
The objective function is symmetric, so that to find
best responses, one can restrict attention to maximiz-
ers of the first element. Such maximizers must have
(μ10, μ00) = (1, 0), and the optimization problem can
be reduced to maximization over ∆ ∈ [−1, 1] of

φ(∆; p, α) ≡ (p∆+1−p)(1−αf1(∆)− (1−α)f4(∆)).

Notice that fi and φ are differentiable in their argu-
ments; this will be used as first-order conditions will
be evaluated. To construct Nash equilibria, it will
be assumed that Nature randomizes evenly over the
maximizer such found and its symmetric counterpart.
The new arguments relative to lemma 2 are as follows.

Step 1: By the same arguments that apply to the
original game, the simplified game possesses Nash
equilibria. These must fall into one of three classes:

(i) Separating equilibria: Assume ∆ > 0, then the
better treatment is the one that has higher expected
success in observable units. The sampling distribution
is binomial and thus possesses a monotone likelihood
ratio property. It follows that δ∗1 (respectively α = 1)
is a best response.

(ii) Pooling equilibria: Assume ∆ = 0, then the sig-
nal generated by the sample is uninformative. Any
decision rule constitutes a best response to this. The
equilibrium from lemma 2 is an example of this case.

(iii) Negatively separating equilibria: Assume ∆ < 1,
then the sample generates an informative signal, but
the decision maker wants to act against this signal. In
the simplified game, her best response would therefore
be δ∗4, which is less sensitive to the signal than δ∗1.

The first two cases have in common that DM’s equi-
librium strategy remains a best response in her un-

restricted strategy space. Whenever the simplified
game’s equilibrium falls into one of these cases, it
therefore is an equilibrium of the original game as
well. This does not hold if the equilibrium is nega-
tively separating, in which case the decision maker’s
unrestricted best response would be δ∗5 ≡ 1− δ∗1.

Step 2: I will now show that a negatively separating
equilibrium cannot obtain. It follows that equilibria of
the simplified game are either separating or pooling,
and thus coincide with equilibria of the original game.

To show the claim, suppose that DM plays δ∗4. This
leads to a negatively separating equilibrium iff Na-
ture’s best response is some ∆∗ < 0. The accordingly
constrained value of her response problem is

sup
∆∈[−1,0)

φ(∆; p, 0)

= sup
∆∈[−1,0)

(p∆+ 1− p)(1− f4(∆)).

For comparison, the problem of maximizing

ρ(∆; p) ≡ (p∆+ 1− p)(1− f3(∆))

was considered in lemma 2; recall it is solved by∆ = 0
and has value (1− p)/2. Substitute the definitions of
δ∗3 and δ∗4 into the definition of fi to find

f3(∆) = EB(∆,N)d∗

f4(∆) = EB(∆,N)d,

where

d∗ =
1

2
+

p(2n−N)

2N(1− p)

d =

⎧⎨⎩ 0, d∗ < 0
d∗, 0 ≤ d∗ ≤ 1
1, d∗ > 1

and where EB(∆,N) denotes expectation with respect
to the distribution of n, which is binomial with para-
meters (∆, N). From inspection of these, it is elemen-
tary that f4(∆) lies between f3(∆) and 1/2 for any
(∆, p); specifically, f4(∆) ≥ f3(∆) whenever ∆ < 0.
It follows that ∆ ≤ 0⇒ φ(∆; p, 0) ≤ ρ(∆; p). Hence,

sup
∆∈[−1,0)

φ(∆; p, 0) ≤ sup
∆∈[−1,0)

ρ(∆; p) = (1− p)/2,

and this supremum is furthermore not attained on
[−1, 0). But φ(∆; p, 0) = (1 − p)/2, so ∆ = 0 is a
strictly better response to δ∗4 than any ∆ < 0.

Step 3: It remains to characterize separating respec-
tively pooling equilibria. The main tool for this will be
evaluation of first-order conditions. For a separating
equilibrium, one must have 0 ≤ argmax∆ φ(∆; p, 1).
Consider the partial derivatives

φ∆(∆; p, 1) = −f 01(∆) (p∆+ 1− p) + p(1− f1(∆))

φ∆p(∆; p, 1) = (1−∆)f 01(∆) + 1− f1(∆) > 0.



Since the cross-derivative is positive,
argmax∆ φ(∆; p, 1) increases in p in strong set
order (that is, its smallest and largest element
increase) by standard supermodularity arguments.
Hence, the separating equilibrium can be maintained
for p > p∗N , where p

∗
N is implicitly defined by

0 ∈ arg max
∆∈[−1,1]

φ(∆; p∗N , 1).

An expression for p∗N can be derived by inspecting the
first-order condition:

φ∆(0, p
∗
N ; 1) = 0.

The previous expression for φ∆(∆, p; 1) can be sim-
plified at ∆ = 0. Write

f1(∆) = Pr(IN > N/2)

=
X

n>N/2

µ
N
n

¶µ
1 +∆

2

¶nµ
1−∆
2

¶N−n
,

which implies that (after some simplification)

f 01(0) = 2
−N

X
n>N/2

µ
N
n

¶
(2n−N) ≡ B.

Also observing that f1(0) = 1/2, the first-order con-
dition becomes

−(1− p)B +
p∗N
2
= 0 =⇒ p∗N =

2B

2B + 1
.

To see convergence of p∗ = 2B
2B+1 to 1, notice that B

can be rewritten as

B = E(|n|−N/2),

where n is the number of successes recorded inN inde-
pendent coin tosses. The convergence rate of binomial
distributions to the Normal immediately implies that
B = O

¡
N1/2

¢
and hence that 1− p∗N = O(N−1/2).

Consider now the pooling equilibrium. This equilib-
rium requires that ∆ = 0 maximizes φ(∆, p;α). A
necessary condition for this is

0 = φ∆(0; p, α)

= (p · 0 + 1− p) (−αf 01(0)− (1− α)f 04(0))

+p (1− αf1(0)− (1− α)f4(0)) .

Some of the previous simplifications apply again; in
particular, f4(0) = 1/2. Substituting in for f4(∆) =
EB(∆,N)d, one finds that (after simplification)

f 04(0) = 2
−N

NX
n=0

µ
N
n

¶
(2n−N) d ≡ A.

The first-order condition thus simplifies to

0 = −(1− p)(αB + (1− α)A) +
p

2

=⇒ α∗ =

p
2(1−p) −A

B −A
.

This yields an equilibrium iff α∗ ∈ [0, 1]. I will show
below that B > A and that A ≤ p

2(1−p) , with equality
iff p ≤ 1/2. Hence, α∗ ≥ 0 as required, and α∗ = 0
iff p ≤ 1/2, yielding the equilibrium from lemma 2.
Furthermore, α∗ equals 1 if p

2(1−p) = B ⇔ p = 2B
2B+1 ,

the condition identified for a separating equilibrium.

I conclude by filling the gaps in the preceding para-
graph. To see that A ≤ p

2(1−p) , with equality iff
p ≤ 1/2, observe that f 04(0) ≤ f 03(0) because f

0
4(∆) ≤

f 03(∆) was shown for ∆ < 0 in step 2, yet these deriv-
atives are continuous. Hence A ≤ f 03(0), but

f 03(0) =
d

d∆
EB(∆,N)

µ
1

2
+

p(2n−N)

2N(1− p)

¶
=

p

2(1− p)

because EB(∆,N)
¡
2n−N
N

¢
= ∆. For p > 1/2, one can

minimally expand on arguments from step 2 to show
f 04(0) < f 03(0), hence A < p

2(1−p) .

To see B > A, take explicit derivatives of binomial
expectations to find (after some simplification)

B = 2−N
NX
n=0

µ
N
n

¶
(2n−N) I {d∗ > 1/2} ,

thus

B−A = 2−N
NX
n=0

µ
N
n

¶
(2n−N) (I {d∗ > 1/2}− d) ,

but (2n−N) (I {d∗ > 1/2}− d) is easily seen to be
over nonnegative for any (n,N). Furthermore, the
above sum is strictly positive whenever there exists n
for which I {d∗ > 1/2} − d 6= 0, that is, whenever δ∗1
and δ∗4 do not agree. (They agree iff p ≥ N/(N + 1),
a number that is well above p∗ for all N .)

Proposition 5 Follows by algebraically evaluating
maxsR(δ

∗, s) using the above simplifications.

Proposition 6 Assume the decision maker can pick
(τ , δ) and that the worst-case prior σ∗ is as in proposi-
tion 1, then due to that prior’s symmetry, the distrib-
ution of (In+1|In) does not depend on τn. Hence, the
decision maker is indifferent between all possible τ ;
in particular, the randomized design, in conjunction
with δ∗, constitutes a best response. That σ∗ remains
a best response follows immediately from the proof of
proposition 1. The conclusion extends to the strat-
ified design because that design generates the same



maximal regret as the randomized one, yet a zero-sum
game cannot have two Nash equilibria with different
values.

Proposition 7 The proof is just as in theorem 4,
with the following adjustment: Extend the decision
problem, and hence the fictitious game, by identifying
the state space with S × [0, 1] with typical element
(s, p). Assume DM sets p = p and then uses δ∗ from
proposition 4. Then by following steps from theorem
4, Nature’s best-response problem can be reduced to

max
p∈[p,p],∆∈[−1,1]

!

{(p∆+ 1− p) (1− αf1(∆)− (1− α)f4(∆))} .

The objective decreases in p — notice especially that
since DM uses p = p, f4(∆) is not a function of Na-
ture’s choice of p. Hence, Nature will choose p = p.
The remainder of the proof is unchanged.
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