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Abstract

During the cheese ripening, airflow pattern and climatic

conditions inside cheese-ripening rooms are determinant

for cheese weight losses. Due to the variation of air ve-

locity inside ripening chambers, homogeneity in the dis-

tribution of climatic conditions is very hard to achieve at

every single point of it. We are hence faced with impre-

cise and incomplete knowledge. In practice, it is common

that some model parameters may be represented by sin-

gle probability distributions, justified by substantial data,

while others are more faithfully represented by possibility

distributions due to the partial nature of available knowl-

edge. This paper applies recent methods, designed for

the joint propagation of variability and imprecision, to a

cheese ripening mass loss model. Joint propagation meth-

ods provide lower & upper probability bounds of exceed-

ing a certain value of cheese mass losses.

Keywords. Imprecise probabilities, p-boxes, belief func-

tions, possibility, food processing, cheese ripening.

1 Introduction

In the food industry, end-products must achieve a compro-

mise between several properties, including sensory, san-

itary, technological properties. Among the latter, sensory

and sanitary properties are essential because they influence

consumer choice and preference. Nevertheless, managing

these properties right from the fabrication stage with the

aim of controlling them is no easy task ([23, 24]). One

of the key reasons of this difficulty is the uncertainty that

should be managed at different levels:

• Uncertainty (more specifically imprecision) on the

measurements, especially the measurements of the

sensory properties [15]. It is obvious and accepted

that there is a lack of efficient sensors, and that exist-

ing sensors often provide incomplete information for

taking action decisions on the process [17]. More-

over, when adequate sensors exist, the configurations

of industrial processes do not often allow an efficient

placement.

• Uncertainty on the phenomenon involved, even for

control purposes. As a consequence the management

of uncertainty on the parameters and also the struc-

ture of the models built are crucial [16].

Few contributions about this topic are available. Among

them Davidson et al. [5] used a fuzzy arithmetic that esti-

mates peanut eating time and browning to control peanut

roasting. Perrot et al. [24] developed a decision help

system to control the cheese ripening process, integrating

the uncertainty of human measurements. Petermeier et al.

[25] used a hybrid approach to develop a model of the foul-

ing behavior of an arbitrary heat treatment device for milk.

This is developed by combining deterministic differential

equations with cognitive elements for the unknown parts

of the knowledge model. These authors emphasize the rel-

evance of this open field of research in the context of food

processes and the interest of fuzzy symbolic representation

of expert reasoning. Nevertheless, they call into question

the optimality of the approaches developed on the basis of

imperfect and incomplete expert knowledge.

The ripening process is one most important step for many

cheese makers. Microbial activities, responsible for the

organoleptic characteristics of cheeses, are influenced

by climatic conditions (air temperature and relative hu-

midity, gas concentration). So, controlling these climatic

conditions inside cheese-ripening rooms is of paramount

importance. Cheese mass loss dynamic is a key point in

ripening process, with consequences on productivity and

it introduces a risk that resulting product may be dropped

in status (e.g., the Camembert-Normandie protected

designation of origin requires a final weight of 0.25 kg).

Ventilation is used to evacuate heat and humidity gener-

ated by cheeses and the spatial distribution of climatic

conditions inside cheese-ripening rooms is dependent on

airflow (air velocity, air change rate). Nevertheless, only a

few studies on interaction between climatic conditions and



airflow can be found in the literature due to confidentiality

conditions. The distribution of climatic conditions is

very hard to achieve at every single point of ripening

chambers. In a industrial context, computational fluid

dynamic model of ripening rooms [20] can not be carried

out without an exhaustive room description. However,

it is inconceivable to install sensors everywhere inside

ripening chambers to pick up for instance temperature and

relative humidity. Hence, we are faced with imprecise

knowledge relative to the spatial variability of climatic

conditions. Heat and mass transfert are a well studied

phenomenon in cooking or drying process. However,

little data have been published for the cheese ripening and

transfert coefficients between cheese and atmosphere are

not precisely described.

It is more and more acknowledged that uncertainty

regarding model parameters has essentially two origins

[12]. It may arise from randomness (often referred to

as ”stochastic uncertainty”) due to natural variability

of observations resulting from heterogeneity or the

fluctuations of a quantity in time. Or it may be caused by

imprecision (often referred to as ”epistemic uncertainty”)

due to a lack of information. This lack of knowledge

may stem from a partial lack of data, either this data

is impossible to collect, or because only experts can

provide some imprecise information. For example, it can

be quite common for an expert to estimate numerical

values of parameters in the form of confidence intervals

according to his/her experience and intuition. The un-

certainty pervading model parameters is not of a single

nature, namely, randomness and incomplete knowledge

may coexist, especially due to the presence of several,

heterogeneous sources of knowledge, as for instance

statistical data and expert opinions. The most general

setting to recognize incompleteness as a feature distinct

from randomness is the one of imprecise probabilities

developed at length by Peter Walley [29]. In this theory,

sets of probability distributions capture the notion of

partial lack of probabilistic information. In practice,

while information regarding variability is best conveyed

using probability distributions, information regarding

imprecision is more faithfully conveyed using families

of probability distributions. Probability boxes [11] or

possibility distributions (also called fuzzy intervals) [9]

or yet belief function introduced by Dempster [7] (and

elaborated further by Shafer [27] and Smets [28] in a

different context) allow to encode such families. Most

researchers typically use either one or the other of these

modes of uncertainty representation [5, 23, 24, 25]. But

to date, such combinations of these different modes of

representation have never been applied to food processing.

In Section 2, we recall basic concepts of probability-boxes,

numerical possibility theory and belief function in connec-

tion with imprecise probabilities. In Section 3, we present

methods for propagating objective (variability) and subjec-

tive (imprecision) information through multivariate func-

tion. We also present post-processing to estimate con-

fidence intervals and/or the probability of exceeding a

threshold. In Section 4, we give an overview of a sim-

plified cheese mass loss dynamic model with available

knowledge associated to model inputs and their represen-

tation. Lastly, in Section 5, we process uncertainty on

cheese mass loss model.

2 Concise representations of imprecise

probability

Consider a probability space (Ω,A,P). Let P be a probabil-

ity family on the referential Ω and X be a random variable

associated with probability measure P. In the following,

we consider three frameworks for representing special sets

of probability functions, which are more convenient for a

practical handling.

2.1 Probability boxes

Suppose FX and F
X

are nondecreasing functions from the

real line R into [0, 1] such that F
X

(x) ≤ FX(x) ≤ FX(x),

∀x ∈ R. The interval [F
X
, FX] is called a ”probability

box” or ”p-box” [11]. It encodes the class of probability

measures whose cumulative distribution functions FX are

restricted by the bounding pair of cumulative distribution

functions F
X

and FX .

A p-box can be induced from the probability family P by

∀x ∈ R:

F(x) = inf
P∈P

P((−∞, x]); F(x) = sup
P∈P

P((−∞, x]). (1)

Let P(P < P) = {P,∀A ⊆ Ω measurable, P(A) ≤ P(A) ≤

P(A)} be the probability family limited by upper P and

lower P probabilities induced from P. Clearly P is a

proper subset of P(P < P) generally. Let P(F
X
≤ FX)

be the probability family containing P and defined by

P(F
X
≤ FX) = {P ∈ P,∀x ∈ R, F

X
(x) ≤ F(x) ≤ FX(x)}.

(2)

Generally P(F
X
≤ FX) strictly contains P(P < P), hence

also the set P it is built from. The probability box [F
X
, FX]

provides a bracketing of some ill-known cumulative dis-

tribution function and the gap between F
X

and FX reflects

the incomplete nature of the knowledge, thus picturing the

extent of what is ignored.

2.2 Numerical possibility theory

Possibility theory [9] is relevant to represent consonant

imprecise knowledge. A possibility distribution can model

imprecise information regarding a fixed unknown param-

eter and it can also serve as an approximate representation



of incomplete observation of a random variable. The basic

notion is the possibility distribution, denoted π, describing

the more or less plausible values of some uncertain vari-

able X. Possibility theory provides two evaluations of the

likelihood of an event: the possibility Π and the necessity

N. The normalized measure of possibility Π (respectively

necessity N) is defined from the possibility distribution π :

R→ [0, 1] such that supx∈R π(x) = 1 as follows:

Π(A) = sup
x∈A

π(x), N(A) = 1 − Π(A) = inf
x<A

(1 − π(x)) . (3)

Numerical possibility distribution may also be viewed as

a nested set of confidence intervals, which are the α-cuts

[x
α
, xα] = {x, π(x) ≥ α} of π. The degree of certainty that

[x
α
, xα] contains X is N([x

α
, xα]) (= 1 − α if π is contin-

uous). Conversely, given a nested set of intervals Ai with

degrees of certainty λi that Ai contains X is equivalent to

the possibility distribution

π(x) = min
i=1...n
{1 − λi, x ∈ Ai}, (4)

provided that λi is interpreted as a lower bound on N(Ai),

and π is chosen as the least specific possibility distribution

satisfying these inequalities [10].

We can interpret any pair of dual functions neces-

sity/possibility [N,Π] as upper and lower probabilities in-

duced from specific probability families.

• Let π be a possibility distribution inducing a pair

of functions [N,Π]. We define the probability fam-

ily P(π) = {P,∀A measurable, N(A) ≤ P(A)} =

{P,∀A measurable, P(A) ≤ Π(A)}. In this case,

supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) = N(A)

(see [6, 10]) hold. In other words, the family P(π)

is entirely determined by the probability intervals it

generates.

• Suppose pairs (interval Ai, necessity weight λi) sup-

plied by an expert are interpreted as stating that the

probability P(Ai) is at least equal to λi where Ai is a

measurable set. We define the probability family as

follows: P(π) = {P,∀Ai, λi ≤ P(Ai)}. We thus know

that supP∈P(π) P(A) = Π(A) and infP∈P(π) P(A) =

N(A) (see [10], and in the infinite case [6]).

We can define a particular p-box [F, F] from the pos-

sibility distribution π such that F(x) = N((−∞, x]) and

F(x) = Π((−∞, x]) ∀x ∈ R. But this p-box contains many

more probability functions than P(π) (see [1] for more de-

tails about comparative expressivity of p-box and possibil-

ity distribution).

2.3 Belief function induced from random sets

The theory of imprecise probabilities introduced by

Dempster [7] (and elaborated further by Shafer [27] and

Smets [28] in a different context) allows imprecision and

variability to be treated separately within a single frame-

work. Indeed, it provides mathematical tools to process

information which is at the same time of random and im-

precise nature. A random set on Ω is defined by a mass as-

signment νwhich is a probability distribution on the power

set of Ω. We assume that ν assigns a positive mass only to

a finite family of subsets of Ω called the set F of focal

subsets. Generally ν(∅) = 0 and
∑

E∈F ν(E) = 1. A ran-

dom set induces set functions called plausibility and belief

measures respectively denoted by Pl and Bel, and defined

by Shafer [27] as follows:

Bel(A) =
∑

E,E⊆A

ν(E), Pl(A) =
∑

E,E∩A,∅

ν(E). (5)

Bel(A) gathers the imprecise evidence that asserts A; Pl(A)

gathers the imprecise evidence that does not contradict A.

These set-functions can be interpreted as families of

probability measures, even if this view does not match

the original motivation of Shafer [27] and Smets [28]

for belief functions. A mass distribution ν may en-

code the probability family P(ν) = {P ∈ P/∀A ⊆ Ω,

Bel(A) ≤ P(A)} = {P ∈ P/∀A ⊆ Ω, P(A) ≤ Pl(A)}. This

family generates lower and upper probability functions

that coincide with the belief and plausibility functions, i.e.

Pl(A) = sup
P∈P(ν)

P(A), Bel(A) = inf
P∈P(ν)

P(A) (6)

Originally, Dempster [7] considered imprecise probabili-

ties induced from a probability space via a set-valued map-

ping Γ from a probability space (Ω,A, P) to S (yielding a

random set). For simplicity assume ∀ω ∈ Ω, Γ(ω) , ∅.

Let X : Ω → S be a random variable such that ∀ω ∈ Ω,

X(ω) ∈ Γ(ω) and PX be its associated probability measure

such that PX(A) = P(X−1(A)). Define upper and lower

probabilities as follows:

P(A) = sup
X∈S (Γ)

PX(A) P(A) = inf
X∈S (Γ)

PX(A) (7)

where S (Γ) = {X : Ω → S |X(ω) ∈ Γ(ω),∀ω ∈ Ω}. For

all measurable subsets A ⊆ Ω, we have A ⊆ A ⊆ A where

A = {ω ∈ Ω/Γ(ω) ⊆ A} and A = {ω ∈ Ω/Γ(ω) ∩ A ,

∅}. By defining the mass distribution νΓ on Ω by ν(E) =

P({ω/Γ(ω) = E}). We thus retrieve belief and plausibility

functions as follows:

P(A) = P(A) = BelΓ(A) =
∑

E⊆A

νΓ(E) (8)

P(A) = P(A) = PlΓ(A) =
∑

E∩A,∅

νΓ(E) (9)

We may define an upper F and a lower F cumulative dis-

tribution function (a particular p-box) such that ∀x ∈ R,

F(x) ≤ F(x) ≤ F(x) with :

F(x) = Pl(X ∈ (−∞, x]); F(x) = Bel(X ∈ (−∞, x]). (10)



But this p-box contains many more probability functions

than P(ν).

2.4 Discretized encoding of probability, possibility

and p-boxes a random sets

Belief functions [7, 27] encompass possibility, probability

and probabiliy-boxes theories in the discrete case. Hence,

we can encode probability distribution p, p-box [F
X
, FX]

and possibility distribution π by using mass distribution ν.

In the continuous case, the representation will be approxi-

mate in a discrete framework for being able to do compu-

tations.

1. Probability→ Belief function.

Let X be a real random variable. In the discrete case,

focal elements are singletons ({xi})i and the mass dis-

tribution ν is defined by ν({xi}) = P(X = xi). In the

continuous case, we define focal intervals ((xi, xi+1])i

by discretizing probability density into m intervals

and a mass distribution ν is defined by ν((xi, xi+1]) =

P(X ∈ (xi, xi+1]), ∀ i = 1 . . .m.

2. Possibility→ Belief function.

Let X be a ill-known random variable described by

a possibility distribution π. Focal sets correspond to

the α-cuts

πα j
= {x|π(x) ≥ α j}, ∀ j = 1...q

of possibility distribution π associated with X such

that α1 = 1 ≥ α j ≥ α j+1 ≥ αq > 0 and πα j
⊆ πα j+1

.

Mass distribution ν is defined by ν(πα j
) = α j −α j+1 ∀

j = 1 . . . q where αq+1 = 0.

3. P-box→ Belief function.

Let X be a ill-defined random variable represented by

a p-box [F
X
, FX]. By putting

F−1
X

(p) = min{x|F
X

(x) ≥ p}, ∀ p ∈ [0, 1] (11)

F
−1

X (p) = min{x|FX(x) ≥ p}, ∀ p ∈ [0, 1] (12)

we can choose focal sets of the form

([F
−1

X (pi), F
−1
X

(pi)])i and the mass distribution ν

such that ν([F
−1

X (pi), F
−1
X

(pi)]) = pi − pi−1 where

1 ≥ pi > pi−1 > 0. In this case, Kriegler et al. [18]

have showed that we have P(F
X
≤ FX) = P(ν).

3 Propagating general heterogeneous

information

This section is dedicated to the combination and the prop-

agation of three kinds of information: pure random vari-

ables, imprecisely known fixed quantities, and imprecise

random variables (see [2, 3] for more details about the

joint propagation methods of variability and imprecision).
−→
X : Ω→ Rk is a random vector that is observed with total

precision;
−→
Y = (y1, . . . , yl) is a deterministic vector and we

have partial information about it. Finally,
−→
Z : Ω→ Rn is a

random vector observed with imprecision. In our model

we suppose that there exists an unidimensional random

variable, T : Ω → R, that can be expressed of the form

T = f (
−→
X ,
−→
Y ,
−→
Z ), where the mathematical model described

by the function f : Rk+l+n → R is totally well-known. We

will try to represent the information about the probability

distribution of T based on the information available, about
−→
X ,
−→
Y and

−→
Z , respectively.

First, as
−→
X is a random vector, it can be considered as a

particular case of multidimensional random set (a single-

ton in Rk). Thus, in our model, we can assume it as part of

vector
−→
Z .

To simplify the notation, suppose
−→
Z = (Z1,Z2) and

−→
Y =

(y1, y2). The imprecise knowledge about y1 (resp. y2) is

modeled by a possibility distribution π1 (resp. π2). Thus,

with a confidence level 1 − α, the parameter y1 (resp. y2)

belongs to α-cut π1
α = {x ∈ R | π

1(x) ≥ α} (resp. π2
α =

{x ∈ R | π2(x) ≥ α}). Let us encode π1 as belief function

by their focal sets:

π1
αi
= {x ∈ R | π1(x) ≥ αi}, ∀i = 1 . . . q (13)

such that π1
αi

⊆ π1
αi+1

with respective masses

ν1
i
= ν(π1

αi
) = αi − αi+1, ∀i = 1 . . . q where

α1 = 1 ≥ αi ≥ αi+1 ≥ αq > 0 and αq+1 = 0. We

proceed in the same way for π2. Let (C1
j
, m1

j
) j=1...r (resp.

(C2
l
, m2

l
)l=1...r) be the focal sets and the mass distribution

associated to Z1 (resp. Z2).

Now, we need to represent the available information

about the probability measure PT induced by T . The

probability measure of T is imprecisely determined by

means of the basic assignment (denoted νT
i jkl

), associated

with the focal sets

Ti jkl = f (π1
αi
, π2

α j
,C1

k ,C
2
l )

of T by ∀i, j, k, l :

νT
i jkl = P(Y1 = π

1
αi
,Y2 = π

2
α j
,Z1 = C1

k ,Z2 = C2
l )

In practice, only the marginals of the joint mass assign-

ment are known, because no assumption is made about the

relationship between the observation processes. If, in par-

ticular, independence between focal sets is assumed, the

mass distribution becomes:

∀i, j, k, l νT
i jkl = ν

1
i × ν

2
j × m1

k × m2
l

Hence, if we want to estimate PlT (A) for all measurable



set A, using the definition of νT
i jkl

, we have:

PlT (A) =
∑

(i, j,k,l):A∩Ti jkl,∅

νT
i jkl, BelT (A) =

∑

(i, j,k,l):Ti jkl⊆A

νT
i jkl

It corresponds to applying a Monte-Carlo method to all

variables. For each possibility distribution, an α-cut is

independently selected. This approach is a conservative

counterpart to the calculus of probabilistic variables under

stochastic independence [4].

Suppose now the same value of α is selected in the Monte-

Carlo simulation for y1 and y2. Then, ∀i, j, k, l:

αi = α j νT
i jkl
= ν

y1,y2

αi
m1

k
m2

l

αi , α j νT
i jkl
= 0

The joint possibility distribution π associated to (y1, y2)

is characterized by min(π1, π2) which corresponds to the

nested cartesian products of α-cuts and ν
y1,y2

i
is the mass

associated to the Cartesian product π1
αi
× π2

αi
. The use of

”minimum” assumes the non-interaction of y1, y2, which

expresses a lack of knowledge about the links between the

values of y1, y2 and a lack of commitment as to whether

y1, y2 are linked or not. We thus assume a total dependence

between focal elements associated to possibilistic vari-

ables. This suggests that, if the source informing on y1 is

rather precise, then the one informing on y2 is also precise

(for instance it is the same source). However, this form of

dependence does not presuppose any genuine functional

(objective) dependence between possibilistic variables in-

side the domain π1
α × π

2
α (observed phenomenons). Hence,

if we want to estimate PlT (A) and BelT (A) using the last

definition of νT
i jkl

, we deduce:

PlT (A) =
∑

jk

ΠT
jk(A)×m1

k×m2
l , BelT (A) =

∑

jk

NT
jk(A)×m1

k×m2
l

where ΠT
jk

are the possibility measures associated with the

joint non-interactive possibility distribution πT
jk

obtained

by means of the extension principle [8]:

πT
jk(t) = sup

(y1, y2) ∈ R2,

(z1, z2) ∈ C1
j
×C2

k
,

f (y1, y2, z1, z2) = t

min(π1(y1), π2(y2))

This technique thus computes the eventwise weighted av-

erage of the possibility measures associated with each out-

put fuzzy interval, and applies to any event. It is easy to

extend this propagation method for more than four vari-

ables.

4 Case description

Our example is concerned with the ripening of a soft

mould cheese (camembert type). A model has been built

[14] to estimate the mass loss of a cheese during ripening

according to the close atmosphere. Our aim is to estimate

confidence intervals or probability that cheese weight ex-

ceeds a threshold during ripening by taking into account

uncertainty relative to measures and model parameters.

4.1 The ripening chamber

Soft cheeses (Camembert type) were manufactured in a

sterile environment as previously described [22]. After

drainage, 45 cheeses were aseptically transferred to a ster-

ile pilot ripening chamber (see Figure 1). The average

weigh of cheese was 0.333 kg with a standard deviation

of 0.023 kg.

The ripening chamber (0.91m3) was placed into a refriger-

ated room to allow the temperature regulation (see Figure

1). A cheese was continuously weighted with an elec-
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Figure 1: cheese-ripening room

tronic balance. Two combined sensors measured atmo-

spheric temperature and relative humidity: 6 cm above the

weighted cheese (see Figure 1, position a) and in the cen-

ter of ripening chamber (see Figure 1, position b). Atmo-

spheric changes were also characterized with CO2 and O2

sensors [26]. When the ripening chamber was used with-

out input airflow, variations of these gas concentrations

were depending only of cheese respiratory activity (CO2

production and O2 consumption). The ripening was per-

formed with a periodically renewed atmosphere: if neces-

sary, the CO2 concentration was decreased to 2% by daily

air injection with 6 m3/h flow rate. In practical, the at-

mosphere was not renewed except 30 min per day. The

ripening duration was 15 days, cheese were turned over

on day 5. All online data were carried out with a 6 min

acquisition period.

4.2 Model of Cheese mass loss

Cheese mass loss dynamic results from exchange between

product (cheese) and close atmosphere. A schematic view

of system is illustrated by Figure 2. Biological activities

induce a matter flux between the cheeses and atmosphere

of the ripening chamber: oxygen consumption and carbon

dioxide release. ro2
, the O2 consumption, and rco2

, the CO2

production rates (mol.m−2.s−1) are obtained by deriving

CO2 and O2 atmospheric concentrations. The respiration
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Figure 2: Schematic view of mass loss phenomenon.

matter flux φr (kg.m−2.s−1), is obtained by the difference

between these two rates balanced by the molar masses

φr = wo2
ro2
− wco2

rco2
(14)

with wo2
and wco2

the respective molar masses (kg.mol−1).

Because the O2 consumption and CO2 production rates

have the same dynamic, the following simplification is

used:

φr ≃
(

wo2
− wco2

)

r = wcr (15)

with

r =

(

ro2
+ rco2

2

)

(16)

The two rates are merged in r, corresponding to the respi-

ratory activity. This simplification can be easily done be-

cause the carbon loss represents only 3% of the total mass

loss.

The difference between water vapor pressure in the atmo-

sphere and at the cheese surface causes an evaporative flux

φw classically represented as following:

φw = k (awsPsv(Ts) − rhPsv(T∞)) (17)

with aws the cheese surface water activity, Ts and T∞ the

average surface and atmospheric temperatures respec-

tively (K), rh the relative humidity (expressed between

0 and 1), Psv(T⋆) (Pa) the saturation vapor pressure at

the temperature T⋆ , and k the average water transfer

coefficient (kg.m−2.Pa−1.s−1).

The saturation vapor pressures are classically calcu-

lated with empirical relations as the Goff-Gratch equation

[30]. However, the ripening temperature is usually be-

tween 12 oC and 14 oC. For this low range of temperature,

an approximation can be done for saturation vapor pres-

sure values, using a linear regression on the Goff-Gratch

equation. The following relation is used:

Psv(T⋆) = β1T⋆ + β2 (18)

where β1 = 102 Pa.K−1 and β2 = −27643 Pa. The rela-

tive error (residual standard deviation over value range) is

equal to 0.48%.

Direct heat exchange between the cheese and the atmo-

sphere result from convective and radiative fluxes (see Fig-

ure 2)

ψcr = h (Ts − T∞) + ǫσ
(

T 4
s − T 4

∞

)

(19)

with h the average convective heat transfer coefficient

(W.m−2.K−1), ǫ the product emissivity (dimensionless)

and σ the Stefan-Boltzmann constant (W.m−2.K−4). The

radiative heat flux relation causes a strong nonlinearity; it

can be approximated as following:

ǫσ
(

T 4
s − T 4

∞

)

≃ 4ǫσT
3

∞ (Ts − T∞) (20)

where T∞ is the atmospheric temperature mean value. It

is then possible to define a global heat transfer coefficient

h⋆ = h + 4ǫσT
3

∞. From [21], we define an empirical rela-

tion between h and k for product with cheese shape

k = 0.75 × 10−8h (21)

In addition, the moisture loss induces an heat consumption

flux ψw = λφw for the evaporation, with λ the water latent

vaporization heat (J.kg−1).

High biological activity is observed during the ripening

for Camembert-type cheeses with an important mycelial

development on the rind. This phenomenon induces a res-

pirative heat production. The generic glucose aerobic res-

piration equation is

C6H12O6+ 6O2 −→

6H2O + 6CO2 + 2.816 × 106J.mol−1

(22)

We have with this equation an equimolarity between O2

and CO2. During ripening, many substrates are oxidized

(lactose, lactate, lipids and proteins), which can induce

small differences between O2 consumption and CO2 pro-

duction. This variability is then represented by the average

of the gases rates r.

The cheese temperature dynamical model is

dTs

dt
=

s

mC
(−ψcr − λφw + α r) (23)

with m the mass of a cheese, s (m2) the surface exchange

of the cheese, C the specific heat (J.kg−1.K−1) and α the

respiration heat (J.mol−1) determined according to (22).

The mass loss dynamic is very slow compared to temper-

ature dynamic, what allows to take Ts at the steady-state.

We can thus write

Ts =
h⋆T∞ − λk (awsβ2 − rh (β1T∞ + β2)) + αr

h⋆ + λkawsβ1

(24)

and the mass loss rate qm is defined by

qm = γh⋆(aws − rh)(β1T∞ + β2)

+ (γawsβ1α + wc) r
(25)

with

γ =
k

h⋆ + λkawsβ1



4.3 Information representation

In this Section, we try to represent the available informa-

tion faithfully relative to input variables and model param-

eters.

4.3.1 model parameters

Knowledge about heat respiration α, water latent vaporiza-

tion heat λ, product emissivity ǫ, Stefan-Boltzmann con-

stant σ and molar mass wc come from literature (see Table

1).

Surface water activity (aws) is a key parameter for relation

(17). Experimental measurements allows us to assume aws

as constant equal to 0.976.

Due to low airflow velocity inside ripening chamber, avail-

able knowledge about the convective heat transfert coeffi-

cient h is imprecise and incomplete. Experts consider that

heat transfert coefficient is most likely to lie between 3 and

3.2 W.m−2.K−4 but they do not exclude values as low as

2.5 and as high as 3.5 W.m−2.K−4. Hence, the knowledge

of convective heat transfert coefficient h is represented

by means of a trapezoidal possibility distribution of core

[3,3.2] and support [2.5,3.5] (see Figure 3). According to
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Figure 3: Trapezoidal possibility distribution representing

convective heat transfert coefficient h

equation (21), knowledge about the average water transfert

coefficient k is also represented by a trapezoidal possibility

distribution.

4.3.2 input variables

The mass loss rate (25) is a function of 3 input variables

which describe the gas exchanges (r) between cheese and

atmosphere and the climatic condition (T∞, rh). Measure-

ments have not shown significant spatial gradient for O2

and CO2 concentrations inside the ripening room. Con-

sequently, the measurements carried out at the position b

(see Figure 1) are assumed as representative of gas con-

centrations close to the cheese. In ripening rooms, as well

as cold chambers, due to air condition control, spatial vari-

ations of humidity rh and temperature T∞ are always ob-

served. These gradients are determined by the shape of the
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Figure 4: Temperature acquisition in postion a (T a
∞) vs

temperature acquisition in position b (T b
∞) (see Figure 1).

room and the air regulation device. They are apprehended

with detailed measurements and computational fluid dy-

namic models (e.g. see [19]) but these approaches can not

be easily performed. We recall that it is inconceivable to

install control sensors everywhere inside ripening rooms

in order to model the behavior of humidity rh and tem-

perature T∞ inside chamber. In the present work, the aim

is thus to estimate climatic conditions (T∞, rh) close to

cheeses (see Figure 1) from on-line temperature and rel-

ative humidity measurements in position b (denoted T b
∞,

rhb), which is realistic in an industrial context. It is ob-

served a linear relationship (see Figure 4 for temperatures)

between climatic conditions (T a
∞, rha) measured by sen-

sors in position a and (T b
∞, rhb) measured in position b

(see Figure 1, position a & position b). From a linear re-

gression analysis, we obtain:

T a
∞ = 0.91T b

∞ + 2.31 and rha = 1.029rhb − 0.064 (26)

with residual standard deviations σT∞ = 6.6%, σrh =

0.5%. Due to low airflow velocity, experts assume that

linear relationships remain valid between measured cli-

matic conditions (T b
∞, rhb) and those close to by cheeses

everywhere inside ripening chamber. However, due to the

ill-known spatial variations of humidity and temperature

inside ripening room, the linear relationships are tainted

with imprecision. According to expert opinions, the im-

precision about linear relationships is characterized by the

imprecise bias of linear models. That means that tempera-

ture T∞ and relative humidity rh perceived by each cheese

can be encoded by:

T∞ = aT∞ × T b
∞ + bT∞ and rh = arh × rhb + brh

where bT∞ ∈ [b
T∞
, bT∞] and brh ∈ [b

rh
, brh]. Finally, by us-

ing linear regressions (26) and the empirical knowledge of

system by experts, we decided, in the present work, to rep-

resent T∞ (resp. rh) by an imprecise normal distribution



Symbol Mode of representation

aws (unit less) 0.976

h (W.m−2.K−1) Trapezoidal possibility distribution

support=[2.5,3.5], core=[3,3.2]

k (kg.m−2.Pa−1.s−1) 0.75×10−8h

r (unit less) measures

T∞ (K) Imprecise normal distribution

N(aT∞T b
∞ + bT∞ , σT∞ )

aT∞ = 0.91

bT∞ ∈ [2.26, 2.36]

σT∞ = 0.075

rh (unit less) Imprecise normal distribution

N(arhrh + brh, σrh)

arh = 1.029

brh ∈ [−0.066,−0.062]

σrh = 0.005

α (J.mol−1) 4.693×105

λ (J.kg−1) 2.47×106

ǫ (unit less) 0.91

σ(W.m−2.K−4) 5.67×10−8

Table 1: Representation of model parameters & input vari-

ables.

N(aT∞T b
∞ + bT∞ , σT∞) (resp. N(arhrhb + brh, σrh)) where

(aT∞ , bT∞ , σT∞) ∈ {0.91}× [2.31−0.5, 2.31+0.5]×{0.075}

(resp. (arh, brh, σrh) ∈ {1.029} × [−0.064 − 0.02,−0.064 +

0.02] × {0.005}. Table 1 summarizes modes of representa-

tion selected for the different model parameters and input

variables.

5 Uncertainty processing

In this Section, we acknowledge the imprecise nature of

available information regarding certain model parameters

& input variables (see Table 1) and attempt to jointly

propagate variability and imprecision in the estimation of

cheese mass loss through ripening process. We assume

stochastic independence between the group of random

sets (T∞, rh) and the group of possibilistic variables (h,

k). Lastly, we assume independence between information

sources pertaining to (T∞, rh). According to the propaga-

tion method described in Section 3, the sketch for estimat-

ing the probability measure of cheese mass loss through

ripening process is the following:

1. For time t = t0.

2. Select a size L of the input sample.

3. We perform a random selection among focal ele-

ments by taking into account dependencies described
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Figure 5: Upper & lower cumulative probabilities of mass

loss rate for the tenth day.
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
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where, ∀i = 1, . . . , L,

T i
∞(t) = [aT∞T b

∞(t)+b
T∞
+σT∞ui, aT∞T b

∞(t)+bT∞+σT∞ui]

rhi(t) = [arhrhb(t)+b
rh
+σrhvi, arhrhb(t)+brh+σrhvi]

and (u1, . . . , uL), (v1, . . . , vL) are random sampling

from N(0, 1).

4. Propagate the sample through the model qm(t),

we obtain a random set with focal elements

([qi

m
(t), qi

m(t)])i=1,...,L defined by:

qi

m
(t) = inf

(h,k,T∞,rh)∈πh
αi
×πk

αi
×T i
∞(t)×rhi(t)

and

q
i
m(t) = sup

(h,k,T∞,rh)∈πh
αi
×πk

αi
×T i
∞(t)×rhi(t)

5. Hence, we can estimate Bel(qm(t) ∈ A) by:

Bel(qm(t) ∈ A) =
1

L
Card{i|[qi

m
(t), qi

m(t)] ⊆ A}

6. t = t + δt, return to step 1.

In order to illustrate the impacts of imprecision and vari-

ability on mass loss rate, We decided to show, through Fig-

ure 5, the upper (Pl(qm(10) ≤ .)) & lower (Bel(qm(10) ≤ .))

cumulative distribution functions of it for the tenth day. It

also illustrates a comparison with the mass loss rate ob-

tained from online acquisition in position a. The gap be-

tween these two distributions is primarily a consequence



of the imprecise nature of available information and, to

a lesser extent, of the choice of the dependence in prop-

agation method. According to Figure 5, there is a 5%

(resp. 95%) of plausibility (resp. belief) of being lower

than 0.172 kg.m−2.d−1 (resp. 0.243 kg.m−2.d−1). We can
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Figure 6: Uncertainty margins of 5% & 95% percentiles

pertaining to the mass loss rate through ripening process.

then summarize the uncertainty on mass loss rate for the
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Figure 7: Uncertainty margins of 5% & 95% percentiles

pertaining to the cheese mass loss through ripening pro-

cess.

tenth day by means of interval [0.172 0.243] which can

be seen as ”confidence interval” containing imprecision.

That means, for instance, we are sure at 95% that mass loss

rate exceeds 0.172 kg.m−2.d−1 for the tenth day. Figure 6

presents uncertainty margins of 5% and 95% percentiles

pertaining to the mass loss rate for each time step through

ripening process.

After integrate mass loss rate, Figure 7 presents uncer-

tainty margins of 5% and 95% percentiles pertaining to

the cheese mass loss for each time step through ripening

process. That means [et
1
, et

2
] such that

Pl(minit −

∫ t

0

qm(u)du ≤ et
1) = 5%

Bel(minit −

∫ t

0

qm(u)du ≤ et
2) = 95%

where minit = 0.333kg. Hence, the probability, at the fif-

teenth day, of being lower than 0.263 kg is inferior to 5%

and the probability of being lower than 0.278 kg is supe-

rior to 95%. That means that mass cheese is upper than

0.263 kg and lower than 0.278 kg with a confidence level

superior to 90% at the fifteenth day of ripening process.

On the one hand, we are sure at 95% that the mass loss of

cheese does not exceed 67 g through 15 days of ripening;

on the other hand, we are sure at 95% that cheese losses at

least 52 g during 15 days.

6 Conclusion

During cheese ripening, a mass loss occurs resulting from

heat and mass transfers from cheese to atmosphere. This

phenomenon is based on physical laws and biological ac-

tivity. The state of knowledge to model the process in-

duces uncertainty on some phenomenon and as a conse-

quence on some parameters of it. In this paper, we have

quantified uncertainty on the model of cheese ripening

mass loss by treating imprecision and variability.

Propagating imprecision on the basis of the results shown,

shall help us to improve the control process. It is inter-

esting to notice that a strategy to complete this knowledge

can be elaborated as to be able to give a better estimation

of the mass loss at the end of the ripening process. For

example, considering the large gap between the upper and

lower bounds on probability in Figure 5, it is clear that fur-

ther studies on heat transfert coefficient and climatic con-

ditions would be needed in order to reduce the subjective

uncertainty regarding these quantities.

Such a result shows that it is possible to integrate and pro-

cess mathematically the uncertainty on a complex process

such as cheese ripening. Further studies will focus on this

last point and moreover on the way to process uncertainty

on a more general frame of knowledge integration and dy-

namic reconstruction.
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