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Abstract

It is often recognised that in real-life decision sit-
uations, classical utility theory puts too strong re-
quirements on the decision-maker. Various interval
approaches for decision making have therefore been
developed and these have been reasonably success-
ful. However, a problem that sometimes appears in
real-life situations is that the result of an evaluation
still has an uncertainty about which alternative is to
prefer. This is due to expected utility overlaps ren-
dering discrimination more difficult. In this article
we discuss how adding second-order information may
increase a decision-maker’s understanding of a deci-
sion situation when handling aggregations of impre-
cise representations, as is the case in decision trees or
influence diagrams.

Keywords. Decision analysis, Imprecise probabili-
ties, Imprecise utilities, Hierarchical models.

1 Introduction

In classical types of utility theories, a widespread
opinion is that utility theory captures the concept of
rationality. However, the shortcomings of this stand-
point are sometimes severe. Among other things, the
question has been raised whether people are capable
of providing the inputs that utility theory requires,
when, for instance, most people cannot clearly dis-
tinguish between probabilities ranging over substan-
tial intervals. Similar problems arise in the case of
artificial decision-makers, since utility-based artificial
agents usually base their reasoning on human assess-
ments, for instance in the form of induced preference
functions. Furthermore, even if a decision-maker is
able to discriminate between different probabilities,
very often complete, adequate, and precise informa-
tion is missing.

Thus, the requirement to provide numerically precise
information in such models has often been considered

unrealistic for real-life decision situations and after
quite intense activities in the area, particularly dur-
ing recent years, a number of models with representa-
tions allowing imprecise probability statements have
been suggested. Such models include possibility the-
ory [4], capacities (of order 1 and 2) [3], [13], [5], evi-
dence theory and belief functions [19], various kinds of
logic [22], upper and lower probabilities [7], hierarchi-
cal models [21], [10], and sets of probability measures
[15]. Some general approaches to evaluating imprecise
decision situations include probabilities and utilities.
[16] is an early example and more recently some other
interesting approaches have been suggested, e.g., [17],
[14], [1], [6], and [2].

2 Decision Trees

In this paper, we let an information frame represent
a decision problem. The idea with such a frame is
to collect all information necessary for the model into
one structure. The representational issues are of two
kinds, structure (trees) and constraints (statements).

Decisions under risk (probabilistic decisions) are of-
ten given a tree representation, cf. [18]. One of the
building blocks of a frame is a decision tree. Formally,
a decision tree is a graph.

Definition 1. A graph is a structure 〈V, E〉 where V
is a set of nodes and E is a set of node pairs (edges).

A general graph structure is, however, too permissive
for representing a decision tree. Hence, we will restrict
the possible degrees of freedom of expression in the
decision tree.

Definition 2. A tree is a connected graph without
cycles. A decision tree is a tree containing a finite
set of nodes and that has a dedicated node at level
0. The adjacent nodes, except for the nodes at level
i − 1, to a node at level i is at level i + 1. A node
at level i + 1 that is adjacent to a node at level i is
a child of the latter. A node at level 1 is an alter-



native. A node at level i is a leaf or consequence if
it has no adjacent nodes at level i + 1. A node that
is at level 2 or more and has children is an event
(an intermediary node). The depth of a rooted tree is
max(n|there exists a node at level n).

Thus, a decision tree is a way of modelling a de-
cision situation where the alternatives are nodes at
level 1 and the set of final consequences are the set of
nodes without children. Intermediary nodes are called
events. For convenience we can, for instance, use the
notation that the n children of a node ci are denoted
ci1, ci2, . . . , cin and the m children of the node cij are
denoted cij1, cij2, . . . , cijm, etc.

Figure 1 shows a decision tree. Over the sets of events
and consequences, different functions can be defined,
such as probability measures and utility functions.

3 Intervals in Decision Making

For numerically imprecise decision situations, one op-
tion is to define probability and utility functions in
the classical way. Another, more elaborate option
is to define sets of candidates of possible probabil-
ity and utility functions. For instance, in [7] such an
approach is suggested. The possible functions are ex-
pressed as vectors in polytopes that are solution sets
to, so called, probability and utility bases (see below).

For instance, the probability (or utility) of cij being
between the numbers ak and bk is expressed as pij ∈
[ak, bk] (uij ∈ [ak, bk]). This approach also includes
relations: a measure (or function) of cij is greater
than a measure (or function) of ckl is expressed as
pij ≥ pkl and analogously uij ≥ ukl. Each statement
can thus be represented by one or more constraints.

Definition 3. Given a decision tree D, a utility base
is a set of linear constraints of the types uij ∈ [ak, bk],
uij ≥ ukl and, for all consequences {cij} in D,
uij ∈ [0, 1]. A probability base has the same structure,
but, for all nodes N (except the root node) in D, also
includes

∑mi

j=1 pij = 1 for the children {cij}j=1,...,mi

of N .

Since a vector in the polytope can be considered to
represent a distribution, a probability base P can be
interpreted as constraints defining the set of all possi-
ble probability measures over the consequences. Sim-
ilarly, a utility base U consists of constraints defin-
ing the set of all possible utility functions over the
consequences. The bases P and U together with the
decision tree constitute the information frame.

Primary evaluation rules of a decision tree model are
based on the expected utility. Since neither probabil-
ities nor utilities are fixed numbers, the evaluation of

the expected utility yields multi-linear expressions.

Definition 4. Given a decision tree T and an alter-
native Ai ∈ A the expression

E(Ai) =
ni0∑

i1=1

pii1

ni1∑
i2=1

pii1i2 · · ·
nim−2∑

im−1=1

pii1i2...im−2im−1

nim−1∑
im=1

pii1i2...im−2im−1imuii1i2...im−2im−1im

where m is the depth of the tree corresponding to
Ai, nik

is the number of possible outcomes following
the event with probability pik

, p...ij ..., j ∈ [1, . . . , m],
denote probability variables and u...ij ... denote utility
variables as above, is the expected utility of alternative
Ai in T .

Maximisation of such non-linear objective functions
subject to linear constraint sets (statements on prob-
ability and utility variables) are computationally de-
manding problems to solve for an interactive decision
tool in the general case, using techniques from the
area of non-linear programming. In, e.g., [7], [8], and
[6], there are discussions about computational proce-
dures reducing the evaluation of non-linear decision
problems to systems with linear objective functions,
solvable with ordinary linear programming methods.
The approach taken is to model probability and util-
ity intervals as constraint sets, containing statements
on upper and lower bounds. Furthermore, normalisa-
tion constraints for the probabilities are added (repre-
senting that the consequences from a parent node are
exhaustive and pairwise disjoint). Such constraints
are always on the form

∑n
j=1 pij = 1 .

The solution sets to probability and utility constraint
sets are polytopes. The evaluation procedures then
yield first-order interval estimates of the evaluations,
i.e. upper and lower bounds for the expected utilities
of the alternatives.

An advantage of approaches using upper and lower
probabilities is that they do not require taking partic-
ular probability distributions into consideration. On
the other hand, the expected utility range resulting
from an evaluation is also an interval. To our expe-
rience, in real-life decision situations, it is then some-
times hard to discriminate between the alternatives.
In effect, an interval based decision procedure keeps
all alternatives with overlapping expected utility in-
tervals, even if the overlap is quite small. Therefore,
it is interesting to extend the representation of the de-
cision situation using more information, such as dis-
tributions over classes of probability and utility mea-
sures, in pursuit of more discriminative power.



4 Including Second-Order
Information

Basically, distributions have been used for expressing
various beliefs over multi-dimensional spaces where
each dimension corresponds to, for instance, possible
probabilities or utilities of consequences. The distri-
butions can consequently be used to express strengths
of beliefs in different vectors in the polytopes.

Beliefs of such kinds are expressed using higher-order
distributions (hierarchical models). Approaches for
extending the interval representation using distribu-
tions over classes of probability and value measures
have been developed into various hierarchical mod-
els, such as second-order probability theory. A quite
early approach was suggested in [11] and [12]. A more
recent example is [20] that provides a model for one-
level trees similar to [9].

In the following, we will pursue the idea of adding
more information and discuss some interesting proper-
ties that appear when evaluating second-order models
as well as the effects of aggregating such distributions
over expected utilities. The main conclusion here is
that the actual deep and breadth of the decision tree
under consideration is of large importance for the in-
terpretation of the result. We will also see that the
detailed shapes of the distributions are not utterly
important compared with this and approximates are
sufficient.

4.1 Distributions over Information Frames

Interval estimates can be considered as special cases of
representations based on distributions over polytopes.
For instance, a distribution can be defined to have a
positive support only for xi ≤ xj . More formally, the
solution set to a probability or utility constraint set is
a subset of a unit cube since both variable sets have
[0, 1] as their ranges. This subset can be represented
by the support of a distribution over the cube.

Definition 5. Let a unit cube be represented by B =
(b1, . . . , bn). The bi can be explicitly written out to
make the labelling of the dimensions clearer. (More
rigorously, the unit cube should be represented by all
the tuples (x1, . . . , xn) in [0, 1]n.)

Definition 6. By a second-order distribution over B,
we denote a positive distribution F defined on the unit
cube B such that

∫
B

F (x) dVB(x) = 1 ,

where VB is the n-dimensional Lebesque measure on

B. The set of all second-order distributions over B is
denoted by BD(B).

For our purposes here, second-order probabilities are
an important sub-class of these distributions and will
be used below as a measure of belief, i.e. a second-
order joint probability distribution. Marginal distri-
butions are obtained from the joint ones in the usual
way.
Definition 7. Let a unit cube B = (b1, . . . , bn) and
F ∈ BD(B) be given. Furthermore, let B−

i =
(b1, . . . , bi−1, bi+1, . . . , bn). Then

fi(xi) =
∫

B−
i

F (x) dVB−
i

(x)

is a marginal distribution over the axis bi.

Such distributions can then straightforwardly be de-
fined over the information frames. However, regard-
less of the actual shapes of the distributions involved,
constraints such as

∑n
i=1 xi = 1 must be satisfied

since it is not reasonable to believe in an inconsis-
tent point such as (0.15, 0.25, 0.4, 0.3) if the vector is
supposed to represent a probability distribution over
four mutually exclusive outcomes. Therefore, a con-
venient and general way of modelling random weights
in [0, 1] is the Dirichlet distribution.
Definition 8. Let the notation be as above. Then the
probability density function of the Dirichlet distribu-
tion is defined as

fDir(p, α) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

pα1−1
1 pα2−1

2 · · · pαn−1
n

on a set {p = (p1, . . . , pn) | p1, p2, . . . , pn ≥ 0,
∑

pi =
1}, where (α1, α2, . . . , αn) is a parameter vector in
which each αi is a positive parameter and Γ(αi) is the
Gamma function.

This distribution is particularly popular among
Bayesian statisticians because it is conjugate with re-
spect to the multinomial distribution, i.e. if we choose
the prior to be the Dirichlet distribution then the
posterior will also become Dirichlet. It is also con-
venient in the sense that it is not hard to choose
parameters to reflect our prior knowledge about the
weights p1, p2, . . . , pn. If we choose large values for
α1, α2, . . . , αn we obtain small variances, which reflect
a large measure of certainty about the probabilities
involved.

Formally, this probability density function does not
fulfil our requirement for a belief distribution, but as
demonstrated in [9], the issue with the dimension loss
can be solved using the the Dirac distribution, δp(x),
with pole at the point p.



Definition 9. Let A be a subset of a unit cube B,
and let f be a belief distribution in A. The natural
extension f̃A(x) of f with respect to A is defined by

f̃A(x) =
{

f(x) if x ∈ A
0 otherwise

Definition 10. Let A be a subset of B. A distribu-
tion gA over B is called a characteristic distribution
for A in B if

f(p) =
∫

B

δp(x)f̃A(x)gA(x) dVB(x)

for every belief distribution f over A, and for every
point p in A.

Now let A = {(p1, . . . , pn) | ∑n
i=1 pi = 1} and let gA

be a Dirichlet distribution. From distribution theory
follows that for every measurable subset A in a unit
cube B, there exists a characteristic distribution for
A in B. It also follows that f̃A(x) · gA(x) is a belief
distribution over B and equals 0 outside A.

4.2 Marginal Distributions

A marginal distribution of a Dirichlet distribution is
a beta distribution. For instance, if the distribution
is uniform, the resulting marginal distribution (over
an axis) is a polynomial of degree n − 2, where n is
the dimension of a cube B: let α1 = α2 = · · · = αn =
1. Then the Dirichlet distribution is uniform and the
marginal distribution is

f(xi) =
∫

B−
i

dVB−
i

(x) = (n − 1)(1 − xi)n−2 .

Example 1. The marginal distribution f(xi) of the
uniform Dirichlet distribution in a 4-dimensional cube
is

f(xi) =

1−xi∫
0

1−y−xi∫
0

6 dz dy = 3(1 − 2xi + x2
i )

= 3(1 − xi)2 .

This tendency is the result of a general phenomenon
that becomes more emphasised as the dimension in-
creases. As it will be discussed in the next section, this
observation of marginal probabilities is important for
the analysis of expected values in decision trees and
similar structures.

4.3 The Expected Value and its Variance

Consider a decision tree with only one level of events
and n alternatives. Let pi denote probabilities and ui

utilities of the consequences of an alternative Aj . We
assume that u1, u2, . . . , un can be considered as inde-
pendent random variables and we denote the mean
and the variance of ui by µi and σ2

i , respectively. We
also assume that p1, p2, . . . , pn are random variables in
the interval [0, 1] satisfying the condition

∑
i pi = 1.

Using the Dirichlet distribution, the expected value
of
∑n

i=1 piui can be calculated straightforwardly. Let
y below represent the (uncertain) expected utility of
the alternative Aj such that y =

∑n
i=1 piui. Then

E(y) = E

(
n∑

i=1

piui

)
=

n∑
i=1

E(pi)E(ui) =
n∑

i=1

αi

α
µi

When calculating the variance, we have to take the
dependence of the pi-variables into account.

We use the convenient formula

Var(y) = E(y2) − E(y)2

where

E(y2) = E

⎛
⎝
(

n∑
i=1

piui

)2
⎞
⎠

= E

(
n∑

i=1

p2
i u

2
i

)
+ 2E

⎛
⎝∑

i<j

pipjuiuj

⎞
⎠

=
n∑

i=1

E(p2
i )E(u2

i ) + 2
∑
i<j

E(pipj)E(ui)E(uj)

=
n∑

i=1

(E(pi)2 + Var(pi))(E(ui)2 + Var(ui))

+2
∑
i<j

(E(pi)E(pj) + Cov(pi, pj))µiµj

=
n∑

i=1

(
α2

i

α2
+

αi(α − αi)
α2(α + 1)

)
(µ2

i + σ2
i )

+2
∑
i<j

(
αiαj

α2
− αiαj

α2(α + 1)

)
µiµj

=
n∑

i=1

αi(αi + 1)
α(α + 1)

(µ2
i + σ2

i ) + 2
∑
i<j

αiαj

α(α + 1)
µiµj

where α =
∑

i αi, and

E(y)2 =

(
n∑

i=1

αi

α
µi

)2

=
n∑

i=1

α2
i

α2
µ2

i + 2
∑
i<j

αiαj

α2
µiµj



Figure 1: The decision tree in Example 2.

Combining these results yields the variance

Var(y) =

1

α2(α + 1)

(
n∑

i=1

αi((α−αi)µ
2
i +α(αi+1)σ2

i )−2
∑
i<j

αiαjµiµj

)

For the uniform case, we obtain

E(y) =
n∑

i=1

1
n

µi = µ̄

and

Var(y) =

1
n2(n + 1)

(
n∑

i=1

((n − 1)µ2
i + 2nσ2

i ) − 2
∑
i<j

µiµj

)

Example 2. Let an information frame contain a de-
cision tree with two alternatives A1 and A2. As-
sume that each have five consequences Ci1, . . . , Ci5

with probabilities pij ∈ [0.1, 0.3], j = 1, . . . , 5, i = 1, 2
and with utilities u1j ∈ [0, 0.7], j = 1, . . . , 5, u2j ∈
[0.2, 1], j = 1, . . . , 5. This tree is shown in Figure
1. An interval analysis yields E(A1) ∈ [0, 0.7] and
E(A2) ∈ [0.2, 1]. The major overlap between the
two alternatives’ expected utility intervals, [0.2, 0.7],
makes it difficult to supply the decision-maker with
any advice. If, for example, the distributions over the
information frame are uniform, we can see that the
distribution of mass over the expected utility clearly
discriminates the alternatives. The expected values
are 0.35 and 0.6 and the variances are around 0.015.
Furthermore, in Figure 2 and Figure 3 the alternatives
are entirely separated already for 75% of the belief
mass (the darker areas). A comparison of the two al-
ternatives is further demonstrated in Figure 4, show-
ing the distribution over the difference E(A1)−E(A2).

If we do not know any specifics of the underlying dis-
tributions, we can utilise Chebyshev’s inequality which

Figure 2: Distribution over E(A1) in Example 2.

Figure 3: Distribution over E(A2) in Example 2.

Figure 4: Distribution over E(A1)−E(A2) in Example
2.



can be formulated in a number of different ways de-
pending on the application. The most common and
useful version is

P(|X − µ| > cσ) ≤ 1
c2

where X is a random variable with mean µ and stan-
dard deviation σ and c is an arbitrary constant. For
instance, if we want to determine a symmetric 95 %
interval around µ, we choose c =

√
20 = 4.47. For

many classical distributions, this approximation is un-
fortunately quite rough, even if it is possible to find
distributions where equality is attained. For instance,
the normal distribution satisfies P(|X−µ| > 1.96σ) =
0.05, which yields an interval being less than half as
wide as the Chebyshev approximation.

In any case, it should be noted that we can add infor-
mation to the decision tree by utilising second-order
information. Moreover, the distributions resulting
from multiplications generally have shapes very dif-
ferent from their marginal components and we will
further investigate this effect below. As will be seen,
this has some implications for trees deeper than one
level.

4.4 Aggregations

The characteristic of a decision tree is that the
marginal (or conditional) probabilities of the event
nodes are multiplied in order to obtain the joint prob-
ability of a combined event, i.e. of a path from the
root to a leaf. In the evaluation of a decision tree
the operations involved are multiplications and addi-
tions. There are therefore two effects present at the
same time when calculating expected utilities in deci-
sion trees. Those are additive effects (for joint prob-
abilities aggregated together with the utilities at the
leaf nodes) and multiplicative effects (for intermediate
probabilities).

One important effect is that multiplied distributions
become considerably warped compared to the corre-
sponding component distributions. Such multiplica-
tions occur in obtaining the expected utility in de-
cision trees and probabilistic networks, enabling dis-
crimination while still allowing overlap. Properties of
additions of components follow from ordinary convo-
lution, i.e. there is a strong tendency towards the
middle.

We will now investigate the combined effect and con-
sider how to put second-order information into use
to further discriminate between alternatives. The
main idea is not to require a total lack of overlap
but rather allowing overlap by interval parts carry-
ing little belief mass, i.e. representing a very small

part of the decision-maker’s belief. Then, the non-
overlapping parts can be thought of as being the core
of the decision-maker’s appreciation of the decision
situation, thus allowing discrimination. In addition,
effects from varying belief (i.e. differing forms of belief
distribution) should be taken into account.

Evaluations of expected utilities in trees lead to mul-
tiplication of probabilities using a type of “multiplica-
tive convolution” of two densities.

Let G be a distribution over the two cubes A and B.
Assume that G has a positive support on the feasible
probability distributions at level i in a decision tree,
i.e. is representing these (the support of G in cube
A), as well as on the feasible probability distributions
of the children of a node xij , i.e. xij1 , xij2, . . . , xijm

(the support of G in cube B). Let f(x) and g(y)
be the marginal distributions of G(z) on A and B,
respectively.

Definition 11. The cumulative distribution of the
two belief distributions f(x) and g(y) is

H(z) =
∫∫
Γz

f(x)g(y) dx dy =

1∫
0

z/x∫
0

f(x)g(y) dy dx =

1∫
0

f(x)G(z/x) dx =

1∫
z

f(x)G(z/x) dx ,

where G is a primitive function to g, Γz = {(x, y) |
x · y ≤ z}, and 0 ≤ z ≤ 1.

Let h(z) be the corresponding density function. Then

h(z) =
d

dz

1∫
z

f(x)G(z/x) dx =

1∫
z

f(x)g(z/x)
x

dx .

The addition of such products is analogous to the
product rule for standard probabilities and we can use
the ordinary convolution of two densities restricted to
the cubes. The distribution h on a sum z = x + y of
two independent variables associated with belief dis-
tributions f(x) and g(y) is therefore given by

h(z) =

z∫
0

f(x)g(z − x) dx .

Example 3. Consider an information frame contain-
ing an alternative A1 with depth 3 and with 3 conse-
quences at each event node. Let p1i ∈ [0, 1], p1ij ∈



Figure 5: The upper one third of the decision tree in
Example 3.

Figure 6: Distribution over E(A1) in Example 3.

[0, 1], p1ijk ∈ [0, 1], u1ijk ∈ [0, 1], and i, j, k ∈ {1, 2, 3}.
This means that no numerical information, except
for the trivial constraints, is provided. Part of the
tree is shown in Figure 5. Looking at the upper and
lower bounds for the expected utility, we find that
E(A1) ∈ [0, 1]. If, for example, the second-order dis-
tributions over the information frame are uniform, we
find that the resulting distribution from each path is
−4(−12 + 12z − 6 ln(z)− 6z ln(z)− ln(z)2 + z ln(z)2)
and that, e.g., 90% of the mass is over the interval
[0.33, 0.67], see Figure 6.

As can be seen, second-order data, for instance in
terms of Dirichlet distributions, may provide impor-
tant information in decision evaluation. The example
above is taking a particular distribution into account,
but as in the previous discussion, these results apply
for all types of distributions.

5 Summary and Conclusions

In classic decision theory it is assumed that a decision-
maker can assign precise numerical values correspond-
ing to the true value of each consequence, as well as

precise numerical probabilities for their occurrences.
In attempting to address real-life problems, where un-
certainty in the input data prevails, some kind of rep-
resentation of imprecise information is important and
several have been proposed. In particular, representa-
tions such as sets of probability measures, upper and
lower probabilities, and interval probabilities and util-
ities of various kinds have been perceived as enabling
a better representation of the input sentences for a
subsequent decision analysis. However, higher-order
analysis can sometimes add important information to
the analysis, enabling further discrimination between
alternatives.

In this paper, we have discussed the effects of em-
ploying second-order information in decision trees. As
was seen from Definition 11, the multiplicative effects
on probabilities in decision trees increase with tree
depth. We have also shown that the multiplicative
and additive effects strongly influence the resulting
distribution over the expected values.

These effects combined yield a method that sometimes
can offer more discriminative power in selecting alter-
natives in decision trees. The main idea of the method
is to allow a small overlap where the belief mass is kept
under control. While the discussion focuses on prob-
abilistic decision trees, the results also apply to other
formalisms involving products of probabilities, such
as probabilistic networks, and to formalisms dealing
with other products of interval entities such as inter-
val weight trees in hierarchical multi-criteria decision
models.
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