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Abstract 

 

The paper is devoted to the investigation of imprecision 
indices, introduced in [8]. They are used for evaluating 
uncertainty (namely imprecision), which is contained in 
information, described by fuzzy (non-additive) measures, 
in particular, by lower and upper probabilities. We argue 
that there exist various types of uncertainty, for example, 
randomness, investigated in probability theory, impreci-
sion, described by interval calculi, inconsistency, incom-
pleteness, fuzziness and so on. In general these types of 
uncertainty have very complex behavior, caused by their 
interaction. Therefore, the choice of uncertainty meas-
ures is not unique, and depends on the problems ad-
dressed. The classical uncertainty measures are Shan-
non’s entropy and Hartley’s measure. In the paper impre-
cision indices and also linear ones are introduced axio-
matically. The system of axioms allows us to define 
various imprecision indices. So we investigate the alge-
braic structure of all imprecision indices and investigate 
their families with best properties. 
 
Keywords. Imprecision indices, lower and upper prob-
abilities, uncertainty-based information. 
  

1   Introduction 

 

Measuring uncertainty plays a major role in uncertainty 

theories, in particular, probability theory, information 

theory, fuzzy sets theory and so on. There are some ways 

how to define such measures in the theory of evidence, in 

the theory of fuzzy (non-additive) measures and in the 

theory of imprecise probabilities. However, one can see 

that in such general theories the uncertainty measure with 

the best properties has not been found as yet. This situa-

tion is explained by the very complex interaction among 

various types of uncertainty, including randomness, 

inconsistence, imprecision, incompleteness of the ana-

lyzed information. We recall classical uncertainty meas-

ures, used in information theory and probability theory. 

Let X  be a finite set of alternatives. Assigning to each 

alternative x X∈  some probability ( ){ }P x , we have 

information, which is described by probability measure 

P , and in this case Shannon’s entropy 

( ) ( )
2

( ) { } log { }
x X

S P P x P x
∈

= −∑  can be used. Let we 

know only that the “true” alternative is in a nonempty set 

B X⊆ . This situation can be described by the non-

additive measure 
1,

( )
0,

B

B A
A

B A
η

⊆⎧
= ⎨
⎩

, A X⊆ , which 

gives the lower probability of an event A , and Hartley’s 

measure 
2

( ) log
B

H Bη =  can be justified. It is easily 

seen that in the first case uncertainty has a type that one 

call randomness, and the second case is more connected 

with imprecision of the information. The generalization 

of these two cases consists in the following. Consider a 

pair ( ),g g  of set functions : 2 [0,1]
X

g → , 

: 2 [0,1]
X

g →  defined on the powerset 2X . We suggest 

that ( ) ( )g A g A≤  for all 2
X

A∈ , ( ) ( ) 0g g∅ = ∅ = , and 

there is a “true” probability measure P  on 2X  with 

( ) ( ) ( )g A P A g A≤ ≤  for all 2
X

A∈ . In other words, set 

functions ,g g  give us upper and lower bounds of prob-

abilities, and for any event 2
X

A∈  we have only the 

interval ( ), ( )g A g A⎡ ⎤⎣ ⎦  of possible values of a “true” 

probability ( )P A . In practical issues it is sufficient to 

define the lower probability g , the upper probability can 

be calculated by ( )( ) 1g A g A= − , where 2
X

A∈  and A  

is the complement of A . Due to works of Abellan, Klir, 

Higashi, Harmanec and others (see [1,5,6,7]), there are 

two important uncertainty measures, which show the best 

properties in a sense of obeying axioms, which are simi-

lar to the axioms of Shannon’s entropy. They are gener-

alized Hartley’s measure, and aggregate measure of 



uncertainty. Let g  be a belief function, i.e. it can be 

represented by 
2

( )X BB
g m B η

∈
= ∑ , where ( ) 0m ∅ = , 

( ) 0m B ≥  for all 2
X

B∈ , and 
2

( ) 1
X

B
m B

∈
=∑ . Then 

generalized Hartley’s measure is defined by 

( ) 2

2 \{ }

( ) log
X

B

GH g m B B
∈ ∅

= ∑ . 

The aggregate measure of uncertainty is calculated by 

( ) sup ( )
P g

Au g S P
≥

= , 

where sup is taken over all probability measures on 2X , 

which are consistent with g , i.e. ( ) ( )P A g A≥  for all 

2
X

A∈ . It is worth to mention that generalized Hartley’s 

measure can be used for measuring imprecision and 

aggregate measure of uncertainty for total uncertainty. It 

is easy to check that aggregate measure of uncertainty 

coincides with Shannon’s entropy for probability meas-

ures and with Hartley’s measure for 
B

g η= , B ≠ ∅ . 

The paper has the following structure. We remind first 

some definitions and results from the theory of non-

additive measures and axiomatic of imprecision indices, 

formulated in [8]. Then we analyze so called linear im-

precision indices on the set of upper and lower probabili-

ties, giving their detailed description, and introducing 

their important families with symmetrical properties. We 

finish the paper with generalizing imprecision indices for 

the set of all monotone measures introducing in addition 

indices of inconsistency.  

 

2   Basic definitions and problem statement 
 

Let X  be a finite set. In the sequel we will use the fol-

lowing notations: 

1. M  is the set of all real-valued set functions on the 

powerset 2X ; 

2. { }0
| ( ) 0M g M g= ∈ ∅ = ; 

3. We write 
1 2
g g≤  for 

1 2
,g g M∈  if 

1 2
( ) ( )g A g A≤  for 

all 2
X

A∈ . 

4. 
0mon

M M⊂  is the set of all normalized monotone set 

functions on 2
X . It means that 

mon
g M∈  implies 

( ) 0g ∅ = , ( ) 1g X = , and ( ) ( )g A g B≤  if A B⊆ . 

5. 
Pr

M  is the set of all probability measures on 2X ; 

6. { }0 Pr
| :

low
M g M P M g P= ∈ ∃ ∈ ≤  is the set of all 

lower probabilities on 2X . 

6. { }0 Pr
| :

up
M g M P M g P= ∈ ∃ ∈ ≥  is the set of all 

upper probabilities on 2X . 

7. Let g M∈  then the dual of g  is denoted by g  and 

by definition: ( )( ) ( )g A g X g A= − , 2
X

A∈ . 

8. 
bel

M  is the set of all belief functions on 2X . Any 

bel
g M∈  has the following unique representation: 

2
( )

X BB
g m B η

∈
=∑ , where ( ) 0m B ≥  for all 2

X
B∈ , 

( ) 0m ∅ = , and 
2

( ) 1
X

B
m B

∈
=∑ . 

9. plM  is the set of all plausibility functions on 2X . Any 

plg M∈  is represented uniquely by 
2

( )
X BB

g m B η
∈

=∑ , 

where ( ) 0m B ≥  for all 2
X

B∈ , ( ) 0m ∅ = , and 

2
( ) 1

X
B

m B
∈

=∑ . 

We can consider the set M  (or 
0

M ) as a linear space 

w.r.t. to usual sum of set functions and usual product of 

set functions and real numbers. In non-additive measure 

theory, the basis, consisting of functions 
B

η , 2
X

B∈ , is 

of interest. Let g M∈  and 
2

( )X g BB
g m B η

∈
= ∑  then 

the set function 
g

m  is called Möbius transform of g . 

The function 
g

m  is expressed by 

\

:
( ) ( 1) ( )

B A

g A A B
m B g A

⊆
= −∑ . We will also use so-

called dual Möbius transform of g . This transform is 

connected with the basis, consisting of set functions 
Bη , 

2
X

B∈ , defined by ( ) ( )
B

B
A Aη η= . Let 

2
( )

X

Bg

B
g m B η

∈
= ∑  then the set function gm  is called 

dual Möbius transform of g . It is calculated by 

\

:
( ) ( 1) ( )

A Bg

A B A
m B g A

⊆
= −∑ . 

We remind now some definitions, introduced in [8]. 

Definition 1. A functional : [0,1]
low

f M →  is called 

imprecision index if the following conditions are ful-

filled: 1) 
Pr

g M∈  implies ( ) 0f g = ; 2) 
1 2

( ) ( )f g f g≥  

for all 
1 2
,

low
g g M∈  such that 

1 2
g g≤ ; 3) ( ) 1

X
f η = . 

Remark 1. We write 
1 2
g g<  for 

1 2
,g g M∈  if 

1 2
g g≤  

and 
1 2
g g≠ . Then sensitive imprecision indices have to 

obey: 
1 2

( ) ( )f g f g>  if 
1 2
,

low
g g M∈  and 

1 2
g g< . In 

some works (e.g. [5,7]) there is an argumentation that 

uncertainty measures have to obey also subaddivity 



property. Here we do not discuss this problem, because, 

in our opinion, this property is related to another kind of 

uncertainty, which can be called incompleteness of the 

information. However, adding the subadditivity property 

to the list of axioms for imprecision indices on 
low

M  

leads to the fact that there is no sensitive imprecision 

index with subadditivity property (for checking this 

statement you can use Example 1 in [1]).It is clear that 

there are many ways for defining imprecision indices. 

One class of them consisting of linear imprecision indi-

ces is described in the following definition.  

Definition 2. An imprecision index f  on 
low

M  is called 

linear if for any linear combination 
1

k

j j lowj
g Mα

=
∈∑ , 

j
α ∈R , j lowg M∈ , 1,...,j k= , we have ( )1

k

j jj
f gα

=
=∑  

( )
1

k

j jj
f gα

=∑ .  

 

3   The investigation of linear imprecision 

indices 
 

We notice first that any linear functional f  on M  is 

defined uniquely by its values on a chosen basis of M . 
This enables to define f  by the set function 

: 2
X

f
µ →R  with the following property 

( )( )f B
B fµ η= , 2

X
B∈ . Since any 

low
g M∈  is repre-

sented as a linear combination of { }
2 \{ }XB

B

η
∈ ∅

, we take 

by definition that ( ) 0fµ ∅ =  (or ( ) 0f η ∅ = ) for any 

linear imprecision index f . 

Proposition 1 [8]. Let f  be a linear imprecision index 

on 
low

M  then f monMµ ∈  with ( ){ } 0
f

xµ =  for any 

x X∈ . 

The following proposition gives us the expression of any 

linear functional through the values of the transformed 

set function. 

Proposition 2. Let f  be a linear functional on M  then 

2
( ) ( ) ( )f

X
B

f g m B g B
µ

∈
= ∑  for any g M∈ . 

Proof. By definition 
2

( )f

X

B

f B
m B

µµ η
∈

= ∑  and 

2
( )

X g CC
g m C η

∈
= ∑ , therefore, 

2
( ) ( ) ( )X g fC

f g m C Cµ
∈

=∑
2 2

( ) ( ) ( )f

X X

B

gC B
m C m B C

µ η
∈ ∈

= ∑ ∑

2 2
( ) ( ) ( )f

X X g CB C
m B m C B

µ η
∈ ∈

= ∑ ∑
2

( ) ( )f

X
B

m B g B
µ

∈
= ∑ .■ 

The following theorem gives necessary and sufficient 

conditions on a linear functional to be an imprecision 

index through the dual Möbius transform of fµ .  

Theorem 1. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff  

a) ( ) 1f
m X

µ = ; 
2

( ) 0f

X
D

m D
µ

∈
=∑ ; 

b) 
:

( ) 0f

D x D
m D

µ

∈
=∑  for all x X∈ ; 

c) ( ) 0f
m D

µ ≤  for all 2 \ { , }X
D X∈ ∅ . 

Proof. It is clear that the condition a) guarantees that 

( ) 1
X

f η =  and ( ) 0f η ∅ = . It is easy to show that b) is 

the necessary and sufficient condition that ( ) 0f g =  for 

any 
Pr

g M∈ . Indeed, since Pr{ }x
Mη ∈  then 

( ) ( ){ }
{ } 0f x
x fµ η= = , ( )

:

{ } ( ) 0f

f D x D
x m D

µµ
∈

= =∑ . 

On the other hand, any 
Pr

g M∈  can be represented as a 

convex sum of 
{ }x

η , i.e. ( ) { }
{ }g xx X

g m x η
∈

= ∑ , hence,  

( ) ( ){ }
( ) { }g xx X

f g m x f η
∈

= ∑  

( ) ( ){ } { } 0g fx X
m x xµ

∈
= =∑ . 

So b) is proved. c) is the sufficient and necessary condi-

tion of antimonotonicity of f  on 
low

M . Let c) be ful-

filled and 
1 2
g g≤  for 

1 2
,

low
g g M∈  then by Proposition 2  

( )
1 2 1 2

2

( ) ( ) ( ) ( ) ( )f

X
B

f g f g m B g B g B
µ

∈

− = −∑  

( )
{ }

1 2

2 \ ,

( ) ( ) ( )f

X
B X

m B g B g B
µ

∈ ∅

= −∑ . 

Since 
1 2
( ) ( ) 0g B g B− ≤  for any 2

X
B∈  and ( ) 0f

m B
µ ≤  

for any { }2 \ ,
X

B X∈ ∅ , we get 
1 2

( ) ( )f g f g≥ , i.e. c) 

implies antimonotonicity of f . Vice versa, let f  be 

antimonotone on 
low

M  then for any 2 \ { , }X
D X∈ ∅  we 

can always find such 
1 2
,

low
g g M∈  with 

1 2
( ) ( )g B g B=  

for all B D≠ , and 
1 2
( ) ( )g D g D< . According to Propo-

sition 2 
1 2

0 ( ) ( )f g f g≤ − =  
1 2

( )( ( ) ( ))fm D g D g D
µ − , 

i.e. ( ) 0f
m D

µ ≤ . ■ 

Conditions of Theorem 1 can be transformed to the form, 

which is very close to the condition “avoiding sure loss” 

from the theory of imprecise probabilities [10]. It enables 
to get the implicit expression for an arbitrary linear im-

precision index. We will further use the functions 1
B

, 

B X⊆ , on X  defined by 1 ( ) 1
B
x =  if x B∈ , and 

1 ( ) 0
B
x =  otherwise. 



Theorem 2. Any linear imprecision index f  on 
low

M  

can be uniquely represented by 

2
( ) 1 ( ) ( )

X
B

f g m B g B
∈

= −∑ , 

where the set function m  obeys the following conditions: 

1) ( ) 0m ∅ = , ( ) 0m X = , ( ) 0m B ≥  for all 2
X

B∈ ; 

2) 
2

( )1 1
X B XB
m B

∈
=∑ . 

Remark 2. The condition of “avoiding sure loss” from 

the theory of imprecise probabilities can be formulated 

with the help of the set function m  from the Theorem 2 

as follows: let 
0

g M∈  then 
low

g M∈  iff for any set func-

tion m  obeying 1), 2) from Theorem 2, we have 

2
( ) ( ) 1

X
B

m B g B
∈

≤∑ . 

Theorem 3. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff f X
a bµ µ η= − , 

where 0b > , 1a b= + , and plMµ ∈  with ( ){ } /x b aµ =  

for all x X∈ . 

Proof. Necessity. Let f  be a linear imprecision index on 

low
M  then  

{ }2 \ ,
( ) ( ) ( )f

Xf AA X
B m A B

µµ η
∈ ∅

= ∑  

( ) ( ) ( ) ( )f f

X
m X B m B

µ µη η∅+ + ∅ , 

where ( ) 0fm A
µ ≤  for any { }2 \ ,

X
A X∈ ∅  and 1η ∅ ≡ , 

( ) 1f
m X

µ = . Let { }2 \ ,
( )f

XA X
a m A

µ

∈ ∅
= −∑  then taking 

1( ) ( )f

a
q A m A

µ= −  for { }2 \ ,
X

A X∈ ∅  and ( ) 0m A =  for 

{ },A X∈ ∅ , we get  

2
( ) ( ) ( ) 1 ( ) ( )f

Xf XAA
B a q A B m B

µµ η η
∈

= − + + ∅∑  

( )
2

( ) 1 ( )
X AA

a q A Bη
∈

= −∑  

( )( ) 1 ( ) ( ) 1f f

X
m B m a

µ µη− ∅ − + ∅ + − . 

It is clear 
2

( ) 1 ( )f f

X
A

m a m A
µ µ

∈
∅ + − = =∑ ( )fµ ∅ = 0 , 

hence, we get the representation required  

2
( ) ( ) ( ) ( )Xf A XA
B a q A B b Bµ η η

∈
= −∑ , 

where 
2

( )X AA
q Aµ η

∈
=∑ , ( )f

b m
µ= ∅ , 1a b= + .  

It is easy to show that ( ){ } /x b aµ = , x X∈ , and 0b > . 

Actually, by Proposition 1 ( ){ } 0
f

xµ =  for all x X∈ , 

i.e. ( ){ } /x b aµ =  for all x X∈ . On the other hand, 

( )
:

{ } ( ) 0f A x A
x a q A bµ

∈
= − =∑ , 

i.e. 0b ≥  and if 0b =  then 0q ≡  and this contradicts to 

the definition of imprecision index. 

Sufficiency. Assume that we have the representation of 

fµ  from the theorem. We prove sufficiency if we check 

all conditions from Theorem 1. We see that ( ) 0fµ ∅ = , 

( ) 1f Xµ = , and ( ){ } 0
f

xµ =  for all x X∈ , i.e. condi-

tions a), b) are true. We will further prove that 

( ) 0f
m A

µ ≤  for all 2 \ { , }X
A X∈ ∅ . Since µ  is a plausi-

bility function, it is represented by 
2

( )X AA
q Aµ η

∈
=∑ , 

where ( ) 0q A ≥  for all 2
X

A∈ , ( ) 0q ∅ = , and 

2
( ) 1X

A
q A

∈
=∑ . We can write 

2
( ) ( ) ( ) ( )Xf A XA
B a q A B b Bµ η η

∈
= −∑  

( ) ( )
2

( ) 1 ( ) 1 ( )
X A XA

a q A B b Bη η
∈

= − − −∑  

( ) ( )
2

( ) 1 ( ) 1 ( )
X XAA

a q A B b Bη η
∈

= − − −∑ . 

The last expression implies ( ) ( ) 0fm A aq A
µ = − ≤  for all 

2 \ { , }X
A X∈ ∅ , i.e. c) is also true. ■ 

From the proof of Theorem 3, we see that we can use the 

basis { }
2 \{ }XB

B

η
∈ ∅

of 
0

M  for defining other sufficient 

and necessary conditions on linear imprecision index. 

We formulate them in 

Corollary 1. Let f  be a linear functional on M  and 

2 \{ }
( )

Xf AA
m Aµ η

∈ ∅
= ∑  then f  is an imprecision index 

iff 1) 
0
( )f M Xµ ∈ ; 2) ( ){ } 0

f
xµ =  for all x X∈ ; 

3) ( ) 0m A ≥  for all 2 \{ , }X
A X∈ ∅ . 

The next theorem follows from Theorem 3. 

Theorem 4. Let f  be a linear functional on M  then it 

is an imprecision index on 
low

M  iff 1) 
0f Mµ ∈ ; 

2) ( ){ } 0
f

xµ =  for all x X∈ ; 3) the set function { }x

f
µ , 

defined by ( ){ }( ) { }x

f f
B B xµ µ= ∪ , 2

X
B∈ , is in plM  for 

any x X∈ . 

It seems to be logical in some problems that the quantity 

of imprecision in the situation, where we know only that 

the true alternative belongs to the set B , depends on B  

and does not depend on other factors. In this case we 

assume that ( ) ( )B C
f fη η=  or ( ) ( )f fB Cµ µ=  if 

B C= , and we call such linear imprecision indices 

symmetrical. In the sequel we will use the fact that such 

symmetrical monotone set functions can be viewed as 

distorted probabilities [3]. Let P  be a probability meas-

ure on { }
1
,...,

N
X x x= ; let : [0,1] [0,1]λ →  be non-

decreasing function with (0) 0λ = , (1) 1λ = , then the set 

function g Pλ=  ( ( )( ) ( )g A P Aλ= , 2
X

A∈ ) is called 



distorted probability. We are interested in the case, where 

{ }( ) 1/
i

P x N= , 1,...,i N= . Further we will use the fol-

lowing sufficient condition of total monotonicity [2]: let 

g Pλ= , then it is a belief function if λ  is infinitely 

differentiable on [0,1)  and ( ) 0n n
d t dtλ ≥ , 1,2,...n = , 

for any [0,1)t∈ . 

Theorem 5. Let f  be a linear functional on M  and 

f Pµ λ= , i.e. fµ  is a distorted probability, mentioned 

above, and { }( ) 1/
i

P x N= , 1,...,i N= . Then f  is an 

imprecision index if: 1) ( )1/ 0Nλ = ; 2) λ  is infinitely 

differentiable on )1
,1

N
⎡⎣  and ( ) 1

1 ( ) 0
n

n n

d t dtλ−− ≥ , 

1,2,...n = , for any )1
,1

N
t ⎡∈ ⎣ . 

Proof. We will check that the all conditions from Theo-

rem 4 are true. It is clear that 
0f Mµ ∈  and ( ){ } 0

f
xµ =  

for all x X∈ . Now we prove that 3) is also true. In this 

case ( )( ){ }
( ) { }

x

f B P B xµ λ= ∪ , \{ }
2
X x

B∈ , { }x

f
µ  can be 

considered as a distorted probability on \{ }
2
X x , and 

{ }

1 1

x

f
Pµ λ= , where ( )1 ( 1)

1( )
t N

N
tλ λ + −= , [0,1]t∈ , and 

{ }( )1
1/( 1)P y N= − , \ { }y X x∈ . We find that { }( )x

f
Aµ =  

( )1 11 ( )P Aλ− = ( )
1 1

1 1 ( )P Aλ− − , i.e. { }

2 1

x

f
Pµ λ=  is a 

distorted probability and 
2 1
( ) 1 (1 )t tλ λ= − − =  

( )( 1)
1 1

t N

N
λ −− − . It is clear { }x

f pl
Mµ ∈  iff { }x

f bel
Mµ ∈ . 

Then we argue that { }x

f
µ  is a plausibility function if 

2
( ) 0n n

d t dtλ ≥ , 1,2,...n = , for any [0,1)t∈ , or 

( ) 1

1 ( ) 0
n

n n

d t dtλ−− ≥ , 1,2,...n = , for any )1
,1

N
t ⎡∈ ⎣ .■ 

In some cases it is suitable to define symmetrical fµ  by 

a non-decreasing function : [1, ) [0, )ϕ +∞ → +∞  with 

(1) 0ϕ =  assuming that ( ) ( )( )f A A Xµ ϕ ϕ=  for 

A ≠ ∅ . Then ( ) ( )( )t tN Nλ ϕ ϕ=  for 
1
,1

N
t ⎡ ⎤∈ ⎣ ⎦ , where 

N X= . It is easy to see that according to Theorem 5, 

fµ  determines a linear imprecision index if ϕ  is infi-

nitely differentiable on [1, )N  and 

( ) 1

1 ( ) 0
n

n n

d t dtϕ−− ≥ , 1,2,...n = , for any [1, )t N∈ . 

Example 1. Let ( ) ln( )t tϕ =  then ( )f Aµ =  

( ) ( )ln lnA X . In this case the corresponding linear 

imprecision index can be considered as the analog of 

generalized Hartley’s measure. We see that 

( ) 1

1 ln( ) ( 1)! 0
n

n n n

d t dt n t
− −− = − ≥  for 1t ≥ , i.e. fµ  

determines a linear imprecision index on 
low

M . 

Example 2. Given two source of information about the 

object of our interest. These sources are described by 

lower probabilities 
1
g  and 

2
g . Assume that the pointed 

sources are consistent, i.e. { }1 2
max ,

low
g g M∈ . We are 

going to use one of the sources in further analysis. This 
situation may be caused that we work, for example, with 

necessity functions and the choice of more exact infor-

mation { }1 2
max ,g g  pushes out from possibility theory. 

Assume that we make a choice from { }1 2
,g g  using the 

metric on 
mon

M  defined by 

( )1 2 1 22
, ( ) ( ) ( )X

B
d g g m B g B g B

∈
= −∑ , 

where 
1 2
,

mon
g g M∈ , m  is a weight function with 

( ) ( ) 0m m X∅ = = , ( ) 0m B >  for all 2 \{ , }X
B X∈ ∅ . We 

choose 1g  if { }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g< , 

2
g  if { }( ) { }( )1 1 2 2 1 2

,max , ,max ,d g g g d g g g> , and if 

{ }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g=  then the addi-

tional analysis is needed for making a decision. Now we 

show how this metric is related to the notion of impreci-
sion index. Simplifying the expression 

{ }( ) { }( )1 1 2 2 1 2
,max , ,max ,d g g g d g g g− =

( )
2 1

2 1

: ( ) ( )

( ) ( ) ( )
B g B g B

m B g B g B
>

− −∑
( )

1 2

1 2

: ( ) ( )

( ) ( ) ( )
B g B g B

m B g B g B
>

− =∑
( )2 1

2

( ) ( ) ( )
X

A

m B g B g B
∈

− =∑  

( ) ( )1 22 2
1 ( ) ( ) 1 ( ) ( )X X

B B
m B g B m B g B

∈ ∈
− − −∑ ∑ . 

We get that the expressions ( )
2

1 ( ) ( )X iB
m B g B

∈
−∑ , 

1,2i = , can be considered as values of the linear impre-

cision index f  if m  obeys the condition 2) of Theorem 

2. In this case we choose 
1
g  if ( ) ( )1 2

f g f g< , i.e. the 

first source gives us more exact information than the 

second. 
 

4   The algebraic structure of the set of linear 

imprecision indices 
 

Let 
1
f , 

2
f  be linear functionals on M  then their linear 

combination 
1 2

f af bf= + , ,a b∈R  is also a linear func-

tional. If we take into consideration set functions 

1 2

, ,f f fµ µ µ , we see that 
1 2

f f fa bµ µ µ= + , i.e. the set of 

all linear functionals on M  is a linear space and this 

space is isomorphic to the linear space M  of all set 

functions on 2X . It is easy to show that if 
1
f , 

2
f  are 

linear imprecision indices then their convex sum 

1 2
f af bf= + , where , 0a b ≥ , 1a b+ = , is also linear 



imprecision index, i.e. the set of all linear imprecision 

indices is a convex set. We denote by 
I

M  the set of all 

set functions fµ , which correspond to linear imprecision 

indices on 
low

M . One can say that we understand the 

algebraic structure of a convex set if we find its extreme 

points. The following theorem gives the necessary and 

sufficient condition on an arbitrary 
I

Mµ∈  to be an 

extreme point.  

Theorem 6. Let 
I

Mµ∈ , ( )
AA

m Aµ η
∈

= −∑ B X
bη , 

where 2 \ { , }X
X⊆ ∅B , ( ) 0m A >  for all A∈B , 

0b > , then µ  is an extreme point of 
I

M  iff functions 

{ }1
A A∈B

 are linearly independent. 

Proof. Notice first that any 
I

Mµ∈  has the representa-

tion ( )
A XA

m A bµ η η
∈

= −∑ B
 by Corollary 1, 0b > , 

and B  is not empty. Secondly, ( ){ } 0xµ =  for all 

x X∈ , i.e.  

( )1 1
A XA

m A b
∈

=∑ B
. 

We will show that µ  is not an extreme point of 
I

M  iff 

functions { }1
A A∈B

 are linearly dependent. This implies 

evidently the theorem statement. Assume that functions 

{ }1
A A∈B

 are linearly dependent. Then there exist two 

different solutions of 1 1
A A XA

α
∈

=∑ B
 w.r.t. 

A
α , A∈B . 

We choose one of them as (1) ( ) /
A

m A bα = , A∈B . Since 

(1) 0
A

α >  for all A∈B , we can choose another solution 

(2)

A
α  with (2)

0
A

α ≥ , A∈B . Let ( )( )(2)

2 1 1
AA

b α
∈

= −∑ B
, 

then it is easy to see that 
2

0b >  and the set function 
2

µ , 

defined by 

(2)

2 2 2A A XA
b bµ α η η

∈
= −∑ B

, 

is in 
I

M . Defining 

{ }(2)

2 2sup | ( ), ,
A

c r rb m A A rb bα= ∈ ≤ ∈ ≤R B , 

we confirm that (0,1)c∈ , 
2

cµ µ≥ . Then  

( )
1 2 1 1

1
( )

1
A XA

c m A b
c

µ µ µ η η
∈

= − = −
− ∑ B

. 

where ( )1 (2)

1 21
( ) ( )

Ac
m A m A cb α−= − , ( )1

1 21 c

b b cb−= − , is 

in 
I

M . We see that 
1 2

(1 )c cµ µ µ= − + , i.e. we have 

proved that µ  is not an extreme point of 
I

M . 

Vice versa; assume that µ  is not an extreme point of 

I
M . Then there exist set functions 

1 2
,

I
Mµ µ ∈  such that 

1 2
a bµ µ µ= + , where , 0a b >  and 1a b+ = . Since 

1 2
, ( )

I
M Xµ µ ∈  we have ( )1 1

i A i XA
m A b

∈
=∑ B

, where 

0
i
b > , 1,2i = . Therefore, the equation 1 1

A A XA
α

∈
=∑ B

 

has more than one solution w.r.t. 
A

α ∈R , A∈B , hence, 

functions { }1
A A∈B

 are linearly dependent if µ  is not an 

extreme point of 
I

M .■ 

Theorem 6 implies that the set 
I

M  has the finite number 

of extreme points. According to the Theorem by Krein-

Milman [9], any 
I

Mµ∈  can be represented as a convex 

sum of extreme points. However, it is a very hard prob-

lem to describe such extreme points explicitly. Further 

we consider one convex subset of 
I

M , for which this 

problem can be solved.  

Definition 3. Let f  be a linear imprecision index on 

low
M , then we call it complementarily symmetrical if 

( ) ( )f f
m A m A

µ µ=  for all 2 \{ , }X
A X∈ ∅ . 

Important examples of complementarily symmetrical 

linear imprecision indices are primitive imprecision 

indices. We see that 

( ) ( ) ( ) ( ) ( )
B
g g X g B g B gν = − − + ∅ , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

B
v A A A A

B B X

A X B B

A A A A

µ η η η η

η η η η∅

= − − + ∅

= − − +
 

Therefore, ( ) 1vBm A
µ =  if { , }A X∈ ∅ , ( ) 1vBm A

µ = −  if 

{ , }A B B∈ , and ( ) 0vBm A
µ =  otherwise. We can also 

express 
B

νµ  through plausibility functions. In this case  

( ) 1 ( ) ( ) ( )

( ) ( ) ( ).

B
v B XB

B XB

A A A A

A A A

µ η η η

η η η

= − − +

= + −
 

By Theorem 6 it is easy to show that primitive indices 

B
ν , 2 \ { , }X

B X∈ ∅ , are extreme points of 
I

M . Actu-

ally, it follows from the fact that functions { }1 ,1
B B

 are 

linearly independent. 

The role of primitive indices for describing the set of all 

complementarily symmetrical linear indices shows the 

following theorem. 

Theorem 7. The set of all complementarily symmetrical 

linear indices is convex. Any complementarily symmetri-



cal linear index can be uniquely represented by a convex 

sum of primitive indices.  

Proof. The convexity of all complementarily symmetri-

cal linear indices it is obvious. Now we will prove that 

any complementarily symmetrical linear index can be 

represented by a convex sum of primitive indices. Let f  

be a complementarily symmetrical linear index and 

low
g M∈  then 

2
( ) ( ) ( )f

X
B

f g m B g B
µ

∈
= ∑ , 

where ( ) ( )f f
m B m B

µ µ=  for all 2 \{ , }X
B X∈ ∅ . Let 

{ }2 \ { } |
X

B X x B= ∈ ∈D , { }2 |
X

B B= ∈ ∈D D  for 

some x X∈  then 2 \{ , }X
X∪ = ∅D D , ∩ =∅D D .  

( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

f f

f

f

B

B

f g m X g X m g

m B g B g B

m B g X g B g B g

µ µ

µ

µ

∈

∈

= + ∅ ∅

+ +

= − − − + ∅

∑
∑

D

D

 

( )( ) ( ) ( )

( ) ( ) ( ) ( ).

f

f f

B
m B g X g

m X g X m g

µ

µ µ

∈
+ + ∅

+ + ∅ ∅

∑ D  

We see that 
:

( ) ( ) ( )f f f

B B x B
m B m B m X

µ µ µ

∈ ∈
= − =∑ ∑D

 

( ) 1f
m X

µ− = − . The equality 
2

( ) 0f

X
B

m B
µ

∈
=∑  implies 

that ( )( ) ( ) ( )f f f

B
m m B m B

µ µ µ

∈
∅ = − + −∑ D

( ) 1f
m X

µ = . 

Hence, 

( ) ( 1) ( )f

BB
f g m B

µ ν
∈

= −∑ D
, 

where ( 1) ( ) 0f
m B

µ− ≥  for all B∈D , and 

( 1) ( ) 1f

B
m B

µ

∈
− =∑ D

, i.e. f  can be represented by a 

convex sum of primitive indices.  

We prove that the found representation is unique if we 

show that system { }
B B

ν
∈D

 of all primitive indices is 

linearly independent in the linear space of all linear func-

tionals on M , or we show the same property for set 

functions { }
B B

νµ ∈D
. It is easy to see that set functions 

Bv B XB
µ η η η= + − , B∈D , are linearly independent, 

this follows immediately from the fact that set functions 

{ }
2 \{ }XB

B

η
∈ ∅

 are also linearly independent in M .■ 

Example 3. Let : Xξ → R , max ( ) min ( ) 1
x Xx X

x xξ ξ
∈∈

− = . 

Then we can define the linear imprecision index by Cho-

quet integral [4] ( )
X X

f g dg dgξ ξ= −∫ ∫ , where 
low

g M∈ . 

Then ( ) max ( ) min ( )f
x Bx B

B x xµ ξ ξ
∈∈

= −  for B ≠ ∅ . It is easy 

to show that such defined an index f  is complementar-

ily symmetrical. It is worth to mention that in the theory 

of imprecise probabilities 
X

dgξ∫  can be viewed as an 

upper estimate of the expectation [ ]E ξ , and 
X

dgξ∫  as a 

lower estimate of the expectation [ ]E ξ . 

Example 4. Let g  be a coherent lower probability, and 

{ }1 2
( ) min ( ), ( )g A P A P A= , where 

1 2 Pr
,P P M∈ , 2

X
A∈ . 

Let f  be a complementarily symmetrical imprecision 

index. Then it is easy to show that 

1 22
( ) ( ) ( ) ( )X

A
f g m A P A P A

∈
= −∑ , 

where m  is a non-negative set function on 2
X  with 

( ) 0m ∅ = , ( ) 0m X = and 
2

( ) 1X
A

m A
∈

=∑ . Therefore, in 

this case we express the value of the imprecision index 
through the metric 

( )1 2 1 22
, ( ) ( ) ( )X

A
d P P m A P A P A

∈
= −∑ , 

1 2 Pr
,P P M∈ , 

on 
Pr

M  if m  has the property ( ) ( ) 0m A m A+ >  for all 

2 \{ , }X
A X∈ ∅ . 

 

5   The extension of imprecision indices to 

the set of all non-additive measures 
 

In this section we will try to extend the notion of impre-
cision index. We consider first one simple generalization 

of imprecision indices onto the set 
up

M .  

Definition 4. A functional : [0,1]
up

f M →  is called 

imprecision index if the following conditions are ful-

filled: 1) 
Pr

g M∈  implies ( ) 0f g = ; 2) 
1 2

( ) ( )f g f g≤  

for all 
1 2
,

up
g g M∈  such that 

1 2
g g≤ ; 3) ( ) 1

X
f η = . 

We call an imprecision index f  on 
up

M  linear if it has 

linear properties on 
up

M . We can define this linear func-

tional on the set of all set functions, and we take by defi-

nition that ( ) 0f η ∅ = .  

The following proposition shows the connection between 

imprecision indices on 
low

M  and 
up

M . 

Proposition 3. Let 
1
: [0,1]

low
f M →  then 

1
f  is an impre-

cision index on 
low

M  iff the functional 
2
: [0,1]

up
f M →  

defined by 
2 1
( ) ( )f g f g= ,

up
g M∈ , is an imprecision 



index on 
up

M . In addition, 
1
f  is a linear index on 

low
M  

iff 
2
f  is a linear imprecision index on 

up
M . 

Corollary 2. Let f  be a linear functional on M  then 

f  is an imprecision index on 
up

M  iff the set function 

fµ , defined by ( )( )f

B
B fµ η= , is in 

I
M . 

We see that using Proposition 3 and Corollary 2, we can 

formulate all results, proved for imprecision indices on 

low
M , through imprecision indices, defined on 

up
M . For 

example, Theorem 2 can be reformulated as follows. 

Theorem 2*. Any linear imprecision index f  on 
up

M  

can be uniquely represented by 

2
( ) ( ) ( )

X
B

f g m B g B a
∈

= −∑ , 

where the set function m  obeys the following conditions: 

1) ( ) 0m ∅ = , ( ) 0m X = , ( ) 0m B ≥  for all 2
X

B∈ ; 

2) 
2

( )1 1
X B XB
m B

∈
=∑ , 

2
( ) 1

X
B

a m B
∈

= −∑ . 

Comparing Theorems 2 and 2*, we see that conditions 

1), 2) are very close. If 1a =  then we can define an im-

precision index on 
low

M  and 
up

M  by one linear func-

tional. Namely, if the linear functional f  defines the 

imprecision on 
low

M , then f−  defines the imprecision 

index on 
up

M , or f  defines an imprecision index on 

low
M  and 

up
M  simultaneously. In some cases, the sign 

of f  may be useful, since it enables to check what the 

argument of f  is: it is a lower or upper probability. If 

the argument g  is not in low upM M∪  we can say that g  

gives us rather lower estimations of probabilities than 

upper probabilities if ( ) 0f g > , and vice versa. In some 

cases, we should guarantee that ( ) ( )f g f g= , in other 

words, the amount of imprecision is the same, if we 

describe uncertainty by lower or by upper probabilities. 

This situation is analyzed in the following proposition. 

Proposition 4. Let f  be a linear functional on M  and 

we use notations from Theorems 2, 2*. Then f  defines 

a linear imprecision index on 
low

M  and 
up

M  with 

( ) ( )f g f g=  for all 
low

g M∈  iff f  is a complemen-

tarily symmetrical index on 
low

M .  

Proof. We see that 1a =  is the necessary condition, and 

this condition is fulfilled for complementarily symmetri-

cal indices. Consider the sum 

2
( ) ( ) 2 ( ) ( )

X
B

f g f g m B g B
∈

+ = − −∑
2

( ) ( )
X

B
m B g B

∈∑ . 

which has to be equal to zero for every 
low

g M∈ .  

2 \{ , }
( ) ( ) ( ) ( )

X
B X

f g f g m B g B
∈ ∅

+ = −∑  

2 \{ , }
( ) ( )

X
B X

m B g B
∈ ∅

=∑  

( )
2 \{ , }

( ) ( ) ( )
X

B X
m B m B g B

∈ ∅
−∑ . 

Since ( ) ( ) ( ) ( )f f
m B m B m B m B

µ µ− = − , for any com-

plementarily symmetrical index ( ) ( ) 0f g f g+ = . We 

prove the proposition if we show that the condition 

( ) ( ) 0m B m B− =  is also necessary one. Let 
D

g η= , 

1D X= −  then ( ) ( ) ( ) ( )f g f g m D m D+ = − , i.e. 

( ) ( ) 0m D m D− =  for any 2
X

D∈  with 1D X= − . 

Assume by induction the statement ( ) ( ) 0m D m D− =  is 

true for any 2
X

D∈  with D X i= − , 1,..., 1i k= − , 

1k X< − . We show that ( ) ( ) 0m D m D− =  for any 

2
X

D∈ , where D X k= − . Actually, choosing 

D
g η=  with D X k= − , we get ( ) ( )f g f g+ =  

( )( ) ( ) ( )
D B X

m B m B g B
⊆ ⊂

− =∑ ( ) ( )m D m D− , i.e. 

( ) ( ) 0m D m D− =  for any 2
X

D∈  with D X k= − .■ 

If we are going to generalize measuring imprecision for 

general case, i.e. imprecision indices are defined on 

mon
M , we should consider two types of uncertainty, 

caused by imprecision and inconsistency, and propose 

their interpretation. One possible interpretation consists 

in the following. Suppose that the set function 
mon

g M∈  

should give us low estimates of probabilities, however, 

low
g M∉ . Then some of its values are greater than it is 

possible, and this implies that information contains some 

amount of inconsistency. Suppose that for measuring 

imprecision we use an index f  on 
low

M . It seems to be 

logical to evaluate the amount of imprecision in g  by 

the value  

Imp
|

( ) inf ( )
lowq M q g

f g f q
∈ ≤

= .  

We see that the functional 
Imp
f  can be considered as an 

extension of f  onto 
mon

M . Let 
up

g M∈  then 

Imp
( ) 0f g = , and we conclude that the amount of impre-

cision is equal to zero, i.e. we have exact information in 

our disposal, however, there is uncertainty caused by 

inconsistency. The amount of this uncertainty can be also 

evaluated. In this case we choose the same axiomatic for 

inconsistency index as for imprecision index for upper 

probabilities. Then we can measure inconsistency by 



( )f g . If 
mon

g M∈  and 
up

g M∉ , we can introduce an 

inconsistency index by 

Inc
|

( ) inf ( )
up

q M q g

f g f q
∈ ≥

= . 

We see that 
Inc
( ) 0f g =  if 

low
g M∈ . It is clear that 

Imp
f  

is antimonotone on 
mon

M , i.e. 
1 2
g g≤  implies 

( ) ( )Imp 1 Imp 2
f g f g≥  for 

1 2
,

mon
g g M∈ . 

Inc
f  is monotone 

on 
mon

M , i.e. 
1 2
g g≥  implies ( ) ( )Imp 1 Imp 2

f g f g≥  for 

1 2
,

mon
g g M∈ . Further we will use the following nota-

tions: { }1 2
min ,g g g=  if { }1 2

( ) min ( ), ( )g A g A g A= , for 

all 2
X

A∈ , 
1 2

, ,
mon

g g g M∈ . Next lemmas shows, how 

the problem of calculating 
Imp
f  

Inc
f  can be simplified. 

Lemma 1. { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

= . 

Proof. Since { }min ,
low

g Mα ∈  for any 
Pr

Mα ∈ , we 

conclude that { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

≤ . Let 
low

q M∈ , 

q g≤  then there is an 
Pr

Mα ∈  with q α≤ . We see 

{ }min ,q gα≤ , i.e. { }
Pr

Imp
|

( ) inf (min , )
M g

f g f g
α α

α
∈ ≤

≥ . So, 

there is one possibility { }
Pr

Imp( ) inf (min , )
M

f g f g
α

α
∈

= .■ 

The next result is proved analogously as Lemma 1. 

Lemma 2. { }
Pr

Inc
( ) inf (min , )

M

f g f g
α

α
∈

= . 

Lemma 3. Let 0.5 0.5g q q= + , 
mon

q M∈ , then 

Imp Imp
( ) ( )f g f g= . 

Proof. It is true because g g=  in this case. ■ 

If we take another interpretation that 
mon

g M∈  gives us 

upper estimations of probabilities then we can follow the 

proposed scheme for defining imprecision and inconsis-

tency indices, assuming that g  gives us lower estimates 

of probabilities, i.e. if f  is an imprecision index on 

low
M , then in this case 

Imp
( )f g  gives us the amount of 

imprecision, and 
Inc
( )f g  gives us the amount of incon-

sistency. In some situations we do not know what infor-

mation we have in our disposal, we know only that g  

gives us estimates of probabilities, and we have to decide 

– it is lower estimates of probabilities or upper estimates 

of probabilities. One way, based on an imprecision index 

f , defined on 
low

M , consists in the following. We can 

assume that in the analyzed information the amount of 

imprecision should be greater or equal than the amount 

of inconsistency. Then, calculating the value 

{ } { }
Pr Pr

S
( ) inf (min , ) inf (min , )

M M

f g f g f g
α α

α α
∈ ∈

= − , 

we suppose that g  is rather lower probability than upper 

probability if 
S
( ) 0f g ≥ , and rather upper probability 

then lower probability if 
S
( ) 0f g < . 

Lemma 4. Let f  be a complementarily symmetrical 

linear imprecision index on 
low

M  then ( ) ( )
S
f g f g= . 

Proof. Let all conditions of the lemma hold and 

{ }2 \ { } |
X

B X x B= ∈ ∈D  for some x X∈  then by 

Theorem 7 ( )( ) ( ) ( ) ( )
A

f g m A g A g A
∈

= −∑ D
, where 

mon
g M∈ , ( ) 0m A ≥  for all A∈D , and ( ) 1

A
m A

∈
=∑ D

. 

Let 
Pr

Mα ∈ , 
mon

g M∈  then 

{ } { }(min , ) (min , ) ( ) ( )
A

f g f g m A q Aα α
∈

− =∑ D
, 

where { } { }( ) max ( ), ( ) min ( ), ( )q A A g A A g Aα α= − −  

{ } { }max ( ), ( ) min ( ), ( ) ( ) ( )A g A A g A g A g Aα α+ = − , i.e. 

{ } { }(min , ) ( ) (min , )f g f g f gα α= + , or 

{ } { }
Pr Pr

inf (min , ) ( ) inf (min , )
M M

f g f g f g
α α

α α
∈ ∈

= + , 

and we get the result required. ■ 

Example 5. Let we have two source of information about 

the object of our interest in the form of possibility meas-
ures defined on the power set of the finite set X . These 

possibility measures are given by possibility distribution 

functions : [0,1]
i
Xπ → , 1,2i = , and values of the corre-

sponding possibility and necessity measures 
i

Π ,
i

N , 

1,2i = , are computed by formulas: ( ) max ( )
i i

x X

A xπ
∈

Π = , 

2 \{ }X
A∈ ∅ , and ( ) 0

i
Π ∅ = ; ( )( ) 1

i i
N A A= −Π , 

2
X

A∈ . By our assumption, the values of 
i

N  give us 

lower estimates of probabilities, the values of 
i

Π  give us 

lower estimates of probabilities. For our example we 

assume that { }1 2 3
, ,X x x x= , and functions 

: [0,1]
i
Xπ → , 1,2i = , are given by Table 1. Combining 

information of these two sources, we get the measure 

{ }1 2
max ,g N N= , which should be a lower probability 

by our assumption, but it is not really in 
low

M  because 

( ) ( )g A g A>  for { }1A x=  and { }2 3
,A x x=  (see Table 2, 

where values of 
i

Π , 1,2i = , g , and corresponding dual 

measures are shown). 

 

 

 

 

 



 

 
1
x  

2
x  

3
x  

1
π  1 0.5 0.5 

2
π  0.4 1 0.6 

 

Table 1: Values of possibility distribution functions. 
 

1
x  

2
x  

3
x  

1
Π  

2
Π  

1
N  

2
N  g  g  

0 0 0 0 0 0 0 0 0 

1 0 0 1 0.4 0.5 0 0.5 0.4 

0 1 0 0.5 1 0 0.4 0.4 0.5 

1 1 0 1 1 0.5 0.4 0.5 1 

0 0 1 0.5 0.6 0 0 0 0.5 

1 0 1 1 0.6 0.5 0 0.5 0.6 

0 1 1 0.5 1 0 0.6 0.6 0.5 

1 1 1 1 1 1 1 1 1 

 
Table 2: Values of monotone measures. 

 

Now for measuring imprecision and inconsistency we 

will use the following imprecision indices on ( )
low

M X : 

( ) 1
| |

1 2
( ) 2 2 ( ) ( )

X

X

B
v g g B g B

−

∈
= − −∑ , 

{ }( ) max ( ) ( ) | 2
X

v g g B g B B∞ = − ∈ , 

( )
2 \{ }

1
( )ln

ln( ) X

g

B

GH g m B B
X ∈ ∅

= ∑ . 

Notice that 
1
,GHν  are linear imprecision indices, and 

ν∞  is non-linear one. The results of measuring uncer-

tainty by these indices are shown in Table 3. 

 

 Imprecision Inconsistency 

 
1

ν  ν∞  GH  
1

ν  ν∞  GH  

1
N  0.5 0.5 0.5 0 0 0 

2
N  0.5(3) 0.6 0.526 0 0 0 

g  0.2 0.5 0.2 0.03(3) 0.1 0.0288 

 

Table 3: Evaluation of uncertainty by imprecision indices. 

 

6   Summary and Conclusions 
 

Although, measuring uncertainty plays a central role in 

various uncertainty theories, there is no possibility to find 

one true uncertainty measure. This can be explained by 

the fact that there are many various types of uncertainty, 
they have different interpretations; it is very difficult to 

understand their mutual interaction. One way for over-

coming this problem is to find families of suitable uncer-

tainty measures, satisfying some justified properties. The 

choice of the best uncertainty measure considerably 

depends on the problem solved. In this paper we have 
proposed how imprecision can be measured if uncertain 

information is described by monotone measures, in par-

ticular lower or upper probabilities. We have treated the 

case, where uncertainty consists of some randomness, 

imprecision, and inconsistency. The introduced axiomat-

ics enables us to give detailed description of linear im-

precision indices, and investigate some of them with 

symmetrical properties. 
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