

5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007


Data-Based Decisions under Imprecise Probability and Least
Favorable Models


Robert Hable
Department of Statistics, LMU Munich
Robert.Hable@stat.uni-muenchen.de


Abstract


Data-based decision theory under imprecise probabil-
ity has to deal with optimisation problems where di-
rect solutions are often computationally intractable.
Using the Γ-minimax optimality criterion, the com-
putational effort may significantly be reduced in the
presence of a least favorable model. In 1984, A. Buja
derived a necessary and sufficient condition for the
existence of a least favorable model in a special case.
The present article proves that essentially the same
result is valid in case of general coherent upper previ-
sions. This is done mainly by topological arguments in
combination with some of L. Le Cam’s decision theo-
retic concepts. It is shown how least favorable models
could be used to deal with situations where the dis-
tribution of the data as well as the prior is assumed
to be imprecise.


Keywords. Decision theory, robust statistics, impre-
cise probability, coherent upper previsions, Le Cam,
equivalence of models, least favorable models.


1 Introduction


1.1 Motivation


Decision theory provides a formal framework for de-
termining optimal actions under uncertainty on the
states of nature. It has a wide range of potential areas
of application which includes also statistical problems,
for example. However, a serious problem in practical
applications of decision theory is that the uncertainty
often is too complex to be adequately described by a
classical, i.e. precise, probability distribution. Ambi-
guity, i.e. the extent of deviation from ideal stochas-
ticity, plays an important role in decision making that
cannot be neglected. To take ambiguity into account
properly, generalisations of the concept of probability
have been developed, among others, by [24] (imprecise
probability) and [25] (interval probability). Here, the
probability of an event is no longer a number p ∈ [0, 1]


but an interval [p, p] ⊂ [0, 1]. These concepts are ap-
plied in a number of recent articles in decision theory,
e.g. [3], [21] and [22].


Generalisations of probabilities as in [24] and [25] have
a strong relationship with some concepts of robust sta-
tistics (cf. e.g. [20, §3.1.7]) - a fact which is frequently
disregarded. Actually, [6] develops a concept of ro-
bust statistics (named “upper expectations”) which
lies between the concepts of [24] and [25]. [6] con-
siders decision making which is explicitly data-based.
This can be understood as a matter of its own as has
been pointed out by [3]. In the spirit of the cele-
brated article [14], [6] characterises the existence of
precise models which are simultaneously least favor-
able for a class of loss functions (or for a class of prior
distributions):


[14] deals with hypothesis testing where a (rather spe-
cial) upper prevision is tested against another one.
This is equivalent to testing between certain sets of
(precise) probabilities M0 and M1. [14] shows that
there is a pair (p0, p1) ∈ M0 × M1 which is least
favorable: Testing between p0 and p1 is as hard as
testing between M0 and M1 and, as a consequence,
there is an optimal test between p0 and p1 which is
also an optimal test between M0 and M1. That way,
testing between M0 and M1 can be done by testing
only between p0 and p1. This reduces the computa-
tional effort substantially. In fact, it is one of the most
important drawbacks of data-based decision theory
(including hypothesis testing) that the computational
effort of direct solutions is frequently not manageable.
Therefore, least favorablility has attracted enormous
attention after the publication of [14]. For a review of
[14] and the work following [14], confer [2]. In quite
general data-based decision theory, where there are n
states of nature (instead of two), an analogous ques-
tion of that one solved by [14] is: Does there exist a
model (q1, q2, . . . , qn) ∈ M1×M2×· · ·×Mn which is
simultaneously least favorable for a class of loss func-
tions? This is not always the case but [6] proves a







necessary and sufficient condition for the existence of
such simultaneously least favorable models.


Unfortunately, [6] contains an error which reduces its
applicability significantly. The validity of the conclu-
sions in [6] can only be guaranteed by adding a re-
strictive assumption on the involved upper previsions
(cf. [10]).


The present article follows the lines of [6] - but within
the concept of [24] which dispenses with σ-additivity.
It is shown that the same result as in [6] is possible
without any additional assumption on the involved
(coherent) upper previsions. This demonstrates that,
in [6], insistence on σ-additivity of probabilities hap-
pens to be an unnecessary burden (cf. also Remark
2.2).


By ignoring σ-additivity, we are in line with Le Cam’s
decision theoretic framework (cf. [15] and [16]), which
provides us with some effective methods. Within
this framework some terms (e.g. randomisations) are
slightly generalised (cf. [16, §1] and [9, §4]).


Sections 2 and 3 develop the decision theoretic
framework. Section 4 contains a generalisation of
the LeCam-Blackwell-Sherman-Stein-Theorem which
plays an important role in Section 5. In Section 5, the
analogue to [6, Theorem 8.2] is proven which charac-
terises the existence of least favorable models. This
is the main theorem of the present article. Section 6
explains how least favorability could be used to deal
with situations where the distribution of the data as
well as the prior is assumed to be imprecise.


Since the content of this article might be obscured
by the mathematical details, the following subsection
presents a rather detailed outline.


1.2 Outline


In order to explain the decision theoretic setup we are
concerned with, the classical decision theoretic setup
is recalled at first:


There is a set Θ where each element θ ∈ Θ represents
a possible state of nature. We know that one state of
nature will occur but we do not know which one it will
be. Furthermore, there is a set D where each element
t ∈ D is a decision we can choose. Depending on what
state of nature θ occurs, every decision t leads to a loss
Wθ(t). The goal is to choose a “good” decision so that
the loss is as small as possible.


Sometimes, we might know a precise expectation π
for the states of nature θ ∈ Θ. Then, we can choose
the decision that minimises the expected loss∫


Θ


Wθ(t) π(dt)


Quite often, we can choose our decision on the base
of an observation y ∈ Y. For example, the observa-
tion y may be the outcome of an experiment. The
distribution of the observation y might be a precise
expectation qθ which depends on the state of nature
θ. That is (qθ)θ∈Θ is a model which describes the
distribution of the observation y.


Such “data-based decision making” can be formalised
by choosing a decision function δ : Y → D , x 7→
δ(y) which minimises∫


Θ


∫
Y


Wθ(δ(y)) qθ(dy) π(dt)


Decision theory commonly also deals with randomised
decisions. Randomised decision procedures (randomi-
sations) are defined in Subsection 2.1. Confer [4] for
an introduction to these basic concepts of decision
theory.


In the following, we are concerned with a more general
decision theoretic setup because we also want to deal
with imprecise probabilities:


Since the prior knowledge about the states of nature
will frequently not be precise, we allow for a whole
set P of possible precise expectations π. Also the
knowledge about the distribution of the observation
may only be imprecise so that there are sets Mθ of
possible precise expectations qθ. While minimising
the expected loss in case of precise expectations is
widely accepted, there are several reasonable optimal-
ity criteria in case of imprecise expectations, confer
[21] for a discussion of the most important ones. In
the present article the so-called Γ-minimax criterion
is used which represents a worst case consideration.1


That is we choose a decision function δ (or rather a
randomisation later on) which minimises the twofold
upper expectation


sup
π∈P


∫
Θ


sup
qθ∈Mθ


∫
Y


Wθ(δ(y)) qθ(dy) π(dt)


Unfortunately, a direct solution of this problem is
quite often computationally intractable. In Section 6,
it is shown how the situation might become manage-
able: In the presence of a model (q̃θ)θ∈Θ ∈ (Mθ)θ∈Θ


which is simultaneously least favorable for P (or for
a corresponding set of loss functions) the above min-
imisation problem may be solved by minimising


sup
π∈P


∫
Θ


∫
Y


Wθ(δ(y)) q̃θ(dy) π(dt)


However, such a least favorable model (q̃θ)θ∈Θ need
not exist. In Section 5, a necessary and sufficient con-


1For the use of the Γ-minimax criterion in Bayesian analysis,
cf. [23] and the literature cited therein.







dition for existence is proven (Theorem 5.4). This
condition is formulated in terms of standard models.


Standard models are our main tool. They are intro-
duced in Subsection 2.3. An important fact is that
every model (consisting of precise expectations) is
equivalent to a standard model. In Subsection 2.2, we
define an equivalence relation on the set of all (pre-
cise) models (qθ)θ∈Θ according to which two (precise)
models (pθ)θ∈Θ and (qθ)θ∈Θ are equivalent if the fol-
lowing is true: Observations of model (pθ)θ∈Θ can
artificially be generated (by a randomisation) from
observations of model (qθ)θ∈Θ and vice versa. Here
and also as decision procedures, randomisations be-
come important. By topological reasons, the term
“randomisation” has to be slightly generalised in the
present article (cf. Subsection 2.1). All these tools
from decision theory (namely randomisations, equiv-
alence of models, standard models) are presented in
Section 2.


In Section 3, minimal Bayes risks are defined for pre-
cise models and for imprecise models as well. It is
shown that minimal Bayes risks can be expressed in
terms of standard models, which in fact is the reason
why we use standard models.


Section 4 contains a generalisation of the LeCam-
Blackwell-Sherman-Stein-Theorem, which is impor-
tant in the proof of the main theorem, Theorem 5.4.
Theorem 5.4 characterises the existence of simultane-
ously least favorable models.


1.3 Some Notation


This subsection collocates some notation which is
used throughout the article.


Let (Y,B) be a measurable space and L∞(Y,B) be the
Banach space of all bounded Borel-measurable real
functions g : Y → R where ‖g‖ = supy∈Y g(y). For a
subset B of Y, IB denotes the characteristic function
of B on Y.


The set of all finitely additive signed measures
ba(Y,B) can be identified with the dual space of
L∞(Y,B), i.e. the Banach space of all linear con-
tinuous real functionals on L∞(Y,B) where ‖µ‖ =
sup


{
|µ[g]|


∣∣ g ∈ L∞(Y,B), ‖g‖ ≤ 1
}


for all µ ∈
ba(Y,B) (cf. [7, Theorem IV.5.1]). µ ∈ ba(Y,B)
is called positive if µ[g] ≥ 0 for every g ≥ 0. This is
denoted by µ ≥ 0.


Let Θ be an index set. Throughout the article,
(Qθ)θ∈Θ is a family of coherent upper previsions Qθ :
L∞(Y,B) → R (cf. [24]). The corresponding sets
of majorised linear previsions are denoted by Mθ :={
qθ ∈ ba(Y,B)


∣∣ qθ[g] ≤ Qθ[g] ∀ g ∈ L∞(Y,B)
}
.


Analogously to [25], Mθ is called structure. (Qθ)θ∈Θ


is called imprecise model on (Y,B). A family (qθ)θ∈Θ


of linear previsions qθ : L∞(Y,B) → R is called pre-
cise model on (Y,B). These terms are adapted from
the notion “statistical model”. [6] and [15] use the
term “experiment” instead of “model”.


Let (X ,A) be another measurable space. F = (qθ)θ∈Θ


will always denote a precise model on (Y,B), E =
(pθ)θ∈Θ will always denote a precise model on (X ,A).
If qθ ∈ Mθ for every θ ∈ Θ, we may also write
(qθ)θ∈Θ ∈ (Mθ)θ∈Θ or F ∈ (Mθ)θ∈Θ. Expressions of
the form (aθ)θ∈Θ will often be abbreviated by (aθ)θ.


For some fixed n ∈ N, put U :=
{
u ∈ Rn


∣∣ u =
(uθ1 , . . . , uθn)′, uθ ≥ 0 ∀ θ ∈ Θ, uθ1 + · · ·+ uθn = 1


}
and C := B⊗n ∩ U where B⊗n is the Borel-σ-algebra
of Rn. For θ ∈ Θ, put ιθ : U → [0, 1], u 7→ uθ where
uθ is the θ-component of u.


2 Some Tools from Decision Theory


2.1 Randomisations


2.1.1 Introduction


Let X be a set of possible outcomes of an experi-
ment and D be a set of possible decisions t. Then,
a decision function may be a map δ : X → D where
δ(x) = t means: If x appears, choose action t. In
addition, decision theory commonly deals with ran-
domised decisions δ : X → ba(D,D), x 7→ τx. Here,
it is supposed that each τx is a linear prevision and
that τ·[h] : x 7→ τx[h] lies in L∞(X ,A) for every
h ∈ L∞(D,D). Then, δ(x) = τx means: After observ-
ing x, start an auxiliary random experiment according
to the distribution τx and choose that action d which
is the outcome of the auxiliary random experiment.


For our purposes, we will need a slight generalisation.
Note that every randomised decision function x 7→ τx


defines a map


σ : ba(X ,A) → ba(D,D), µ 7→ σ(µ)


via


σ(µ) : h 7→ σ(µ)[h] = µ
[
τ·[h]


]
(1)


It is easy to see that σ is


• linear


• positive: σ(µ) ≥ 0 for every µ ≥ 0


• normalised: ‖σ(µ)‖ = ‖µ‖ for every µ ≥ 0


2.1.2 Definition


Let (X ,A) and (Y,B) be measurable spaces. Accord-
ing to [15], a randomisation from X to Y is a linear,







positive and normalised map


T : ba(X ,A) → ba(Y,B)


where “positive” means T (µ) ≥ 0 for every µ ≥ 0 and
“normalised” means ‖T (µ)‖ = ‖µ‖ for every µ ≥ 0.
Let T (X ,Y) denote the set of all randomisations from
X to Y.


We also mark a class of randomisations of a very sim-
ple form: To this end, let κ be a map


κ : L∞(Y,B) → L∞(X ,A), g 7→ κ(g)


so that there is some finite set S ⊂ Y and


κ(g) =
∑
y∈S


g(y)αy ∀ g ∈ L∞(Y,B)


where αy ∈ L∞(X ,A) ∀ y ∈ S, αy ≥ 0 ∀ y ∈ S and∑
y∈S αy ≡ 1. Then,


κ∗ : ba(X ,A) → ba(Y,B), µ 7→ κ∗(µ)


where κ∗(µ)[g] = µ[κ(g)] ∀ g ∈ L∞(Y,B), is called
restricted randomisation. It is easy to see that every
restricted randomisation is generated by a (very sim-
ple) randomised decision function via (1). Every re-
stricted randomisation is in fact a randomisation , i.e.
Tr(X ,Y) ⊂ T (X ,Y) where Tr(X ,Y) denotes the set
of all restricted randomisations.


2.1.3 Topological Issues


Models which consist of imprecise probabilities are
so extensive that sequential limit arguments are no
longer adequate. So, we have to resort to topological
arguments.


Let Q : L∞(Y,B) → R be a coherent upper pre-
vision with structure M :=


{
q ∈ ba(Y,B)


∣∣ q[g] ≤
Q[g] ∀ g ∈ L∞(Y,B)


}
.


In addition to the norm-topology, ba(Y,B) can also
be provided with the σ(ba,L∞)-topology. This is the
smallest topology so that


ba(Y,B) → R , µ 7→ µ[g]


is continuous for every g ∈ L∞(Y,B).


Theorem 2.1 M is σ(ba,L∞)-compact.
(Cf. [24, §3.6.1].)


Remark 2.2 According to Theorem 2.1, compact-
ness of M comes for free. If we restricted M to
σ-additive measures, we would have to impose addi-
tional assumptions to ensure compactness in reason-
able topologies. So, insistence on σ-additivity appears
to be a burden.


T (X ,Y) can be provided with the topology of point-
wise convergence on ba(X ,A)×L∞(Y,B). This is the
smallest topology so that


T (X ,Y) → R, T 7→ T (µ)[g]


is continuous for every µ ∈ ba(X ,A) and every g ∈
L∞(Y,B). The following theorem is the reason why
we use the generalisation of randomised procedures:


Theorem 2.3 T (X ,Y) is a compact Hausdorff
space. (Cf. [16, Theorem 1.4.2].)


The following theorem indicates that the term “ran-
domisation” has only been slightly generalised:


Theorem 2.4 Tr(X ,Y) is dense in T (X ,Y).


Proof: This is a consequence of [15, Theorem 1]. 2


Especially, Theorem 2.4 implies that the randomised
procedures defined via (1) are dense in T (X ,Y).


2.2 Sufficiency and Equivalence of Models


Let E = (pθ)θ∈Θ be a precise model on (X ,A) and
F = (qθ)θ∈Θ a precise model on (Y,B).


Analogously to [6], (pθ)θ∈Θ is called sufficient for
(qθ)θ∈Θ if there is a randomisation T ∈ T (X ,Y) so
that T (pθ) = qθ ∀ θ ∈ Θ.


This definition of “sufficiency” essentially goes back
to [5]. It does not strictly coincide with the more
common definition in terms of conditional expecta-
tions but, under suitable assumptions of regularity,
the definitions do coincide (cf. [13]). At least, if the
randomisation T is generated by a randomised func-
tion x 7→ τx via (1), the above definition has a very
descriptive interpretation:


Let x be an observation distributed according to pθ.
After observing x, start an auxiliary random exper-
iment according to τx. Then, the outcome y of the
auxiliary random experiment is distributed according
to qθ. That is, if we have observations of the model
(pθ)θ, we can artificially generate observations of the
model (qθ)θ “by coin tossing”.


(pθ)θ∈Θ and (qθ)θ∈Θ are called equivalent if they are
mutually sufficient, i.e. there are some T1 ∈ T (X ,Y),
T2 ∈ T (Y,X ) so that T1(pθ) = qθ ∀ θ ∈ Θ and
T2(qθ) = pθ ∀ θ ∈ Θ.


The descriptive interpretation of sufficiency already
indicates that equivalent models essentially coincide
from a decision theoretic point of view. Our defin-
ition of equivalence is in accordance with Le Cam’s
definition (cf. [9, §5.2]).


Let (Qθ)θ∈Θ be an imprecise model with correspond-
ing structures Mθ, θ ∈ Θ.







Analogously to [6], (pθ)θ∈Θ is called worst-case-suf-
ficient for (Qθ)θ∈Θ if (pθ)θ∈Θ is sufficient for some
(qθ)θ∈Θ ∈ (Mθ)θ∈Θ. So, (pθ)θ∈Θ is worst-case-suf-
ficient for (Qθ)θ∈Θ if and only if there is some T ∈
T (X ,Y) so that ∀ θ ∈ Θ


T (pθ)[g] ≤ Qθ[g] , ∀ g ∈ L∞(Y,B)


2.3 Standard Models


Let the index set Θ be finite with cardinality n.


In Subsection 2.2, we have defined an equivalence re-
lation on the precise models with a fixed index set
Θ. Each equivalence class contains a uniquely defined
representative (called standard model later on) which
has some nice properties.2 This is the content of the
following theorem.


Theorem 2.5 Every precise model F = (qθ)θ∈Θ on
(Y,B) admits a uniquely defined (σ-additive) proba-
bility measure sF on (U , C) so that dsFθ = nιθ dsF


defines a precise model (sFθ )θ∈Θ on (U , C) which is
equivalent to F . (Cf. [9, Theorem 6.5].)


Analogously to [6], sF is called standard measure and
(sFθ )θ∈Θ is called standard (precise) model of F .


Standard models share two important properties:


• They are defined on the very nice measurable
space (U , C) (cf. Subsection 1.3).


• They consist of linear previsions sθ which are σ-
additive probability measures.


For the imprecise model (Qθ)θ∈Θ with corresponding
structures Mθ, we can uniquely define


S[h] = sup
{
sF [h]


∣∣ F ∈ (Mθ)θ∈Θ


}
∀h ∈ L∞(U , C)


Sθ[h] = sup
{
sFθ [h]


∣∣ F ∈ (Mθ)θ∈Θ


}
∀h ∈ L∞(U , C)


S is called standard upper prevision, (Sθ)θ∈Θ is called
standard imprecise model of (Qθ)θ∈Θ. Note that S is
a coherent upper prevision on L∞(U , C) and (Sθ)θ∈Θ


is an imprecise model on (U , C).


3 Minimal Bayes Risks


Let the index set Θ = {θ1, . . . , θn} be finite with
cardinality n and let π be a prior distribution on
(Θ, 2Θ), i.e. π is a linear prevision on L∞(Θ, 2Θ). Put
πθ := π[I{θ}].


2As stated in Subsection 2.2, equivalent models essentially
coincide from a decision theoretic point of view. Therefore,
every decision problem coincides with a “standard decision
problem” where a standard model is involved. We will deduce
properties of the original decision problem from the correspond-
ing “standard decision problem” later on.


A decision space is a measurable space (D,D) where
D is the set of possible decisions. A loss function is a
family (Wθ)θ∈Θ ⊂ L∞(D,D).


The measurable space (Y,B) may represent the re-
sults of an experiment. According to [15], a decision
procedure is a randomisation


σ : ba(Y,B) → ba(D,D)


i.e. σ ∈ T (Y,D).


Now, Bayes risks can be defined for precise models
(Subsection 3.1) and for imprecise models (Subsec-
tion 3.2). The main goal of the present section is
to express minimal Bayes risks in terms of standard
measures (Theorem 3.2) and standard upper previ-
sions (Theorem 3.4).


3.1 Precise Models


Let (qθ)θ∈Θ be a precise model on (Y,B). For a de-
cision procedure σ ∈ T (Y, D) and a loss function
(Wθ)θ∈Θ ⊂ L∞(D,D), the risk function of (qθ)θ∈Θ


is
σ(q)[W ] : θ 7→ σ(qθ)[Wθ]


The Bayes risk is


R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)
= π


[
σ(q)[W ]


]
=


=
∑
θ∈Θ


πθσ(qθ)[Wθ]


Note that this definition coincides with the usual one
if σ is defined by a randomised decision function via
(1).


The minimal Bayes risk is the same if we let σ vary
among the randomisations or the restricted randomi-
sations:


Proposition 3.1


inf
σ∈T (Y,D)


R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)
=


= inf
σ∈Tr(Y,D)


R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)
Proof: The definition of the topology of pointwise con-
vergence implies continuity of the map


σ 7→
(
σ(qθ1)[Wθ1 ] , . . . , σ(qθn


)[Wθn
]
)


and, therefore, continuity of


σ 7→ R
(
(qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)
Since Tr(Y, D) is dense in T (Y, D) (Theorem 2.4), the
statement follows. 2







For (Wθ)θ∈Θ ⊂ L∞(D,D), put


K
(
(Wθ)θ


)
: u 7→ inf


τ∈D


∑
θ∈Θ


nπθWθ(τ)ιθ(u) (2)


on Rn where ιθ(u) = uθ is the θ-component of
u ∈ RΘ ∼= Rn. Note that K


(
(Wθ)θ


)
is concave


and, therefore, continuous on Rn. Hence, the re-
striction of K


(
(Wθ)θ


)
on U is Borel-measurable and


s(qθ)θ
[
K


(
(Wθ)θ


)]
is defined well where s(qθ)θ is the


standard measure of (qθ)θ∈Θ.


Theorem 3.2


inf
σ∈T (Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)
= s(qθ)θ


[
K


(
(Wθ)θ


)]
Proof: According to Theorem 2.5, the standard model(
sFθ


)
θ∈Θ


is equivalent to F := (qθ)θ∈Θ. That is(
sFθ


)
θ∈Θ


and F are mutual sufficient. So, a twofold
application of Lemma 8.2 yields


inf
σ∈T (Y,D)


R
(
F , σ, (Wθ)θ


)
=


= inf
ρ∈T (U,D)


R
(
(sFθ )θ, ρ, (Wθ)θ


)
and an application of Lemma 8.1 closes the proof. 2


3.2 Imprecise Models


Let (Qθ)θ∈Θ be an imprecise model on (Y,B) with
corresponding structures Mθ, θ ∈ Θ, and standard
upper prevision S. For a decision procedure σ ∈
T (Y, D) and a loss function (Wθ)θ∈Θ ⊂ L∞(D,D),
the risk function of (Qθ)θ∈Θ is


θ 7→ sup
qθ∈Mθ


σ(qθ)[Wθ]


and the Bayes risk is


R
(
(Qθ)θ, σ, (Wθ)θ


)
=


∑
θ∈Θ


πθ sup
qθ∈Mθ


σ(qθ)[Wθ]


Hence,


R
(
(Qθ)θ, σ, (Wθ)θ


)
= sup


(qθ)θ∈(Mθ)θ


R
(
(qθ)θ, σ, (Wθ)θ


)
These definitions includes that we have chosen the Γ-
minimax optimality criterion which represents a worst
case consideration (cf. Subsection 1.2) - as done in
[14] and [6].


Now, we can derive the analogues of Proposition 3.1
and Theorem 3.2 in case of imprecise models:


Proposition 3.3


inf
σ∈T (Y,D)


R
(
(Qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)
=


= inf
σ∈Tr(Y,D)


R
(
(Qθ)θ∈Θ, σ, (Wθ)θ∈Θ


)


Proof: This is a direct consequence of Lemma 8.3 (a),
Proposition 3.1 and Lemma 8.3 (b). 2


Theorem 3.4


inf
σ∈T (Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
= S


[
K


(
(Wθ)θ


)]
Proof: This is a direct consequence of Lemma 8.3,
Theorem 3.2 and the definition of the standard upper
prevision. 2


4 The General LeCam-Blackwell-
Sherman-Stein-Theorem


This section contains a generalisation of the LeCam-
Blackwell-Sherman-Stein-Theorem. We need this the-
orem in the proof of our main theorem, Theorem 5.4.


Let Θ be a finite index set. Let π be a prior distrib-
ution on (Θ, 2Θ) so that πθ := π[I{θ}] > 0 ∀ θ ∈ Θ.
Let (pθ)θ∈Θ be a precise model on (X ,A) and (Qθ)θ∈Θ


an imprecise model on (Y,B) where (Mθ)θ∈Θ is the
corresponding family of structures. Let s(pθ)θ be the
standard measure of (pθ)θ∈Θ and S the standard up-
per prevision of (Qθ)θ∈Θ on (U , C).


Let Ψ be the set of all functions k ∈ L∞(U , C)
such that there is some decision space (D,D) and
a loss function (Wθ)θ∈Θ ⊂ L∞(D,D) where k(u) =
infτ∈D


∑
θ∈Θ nπθWθ(τ)ιθ(u) ∀u ∈ U .


Theorem 4.1 The following statements are equiva-
lent:


(a) (pθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ.


(b) s(pθ)θ [k] ≤ S[k] ∀ k ∈ Ψ


(c) For every finite decision space (D,D) and every
loss function (Wθ)θ∈Θ ⊂ L∞(D,D),


inf
ρ∈T (X ,D)


R
(
(pθ)θ, ρ, (Wθ)θ


)
≤


≤ inf
σ∈Tr(Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
(d) For every decision space (D,D) and every loss


function (Wθ)θ∈Θ ⊂ L∞(D,D),


inf
ρ∈T (X ,D)


R
(
(pθ)θ, ρ, (Wθ)θ


)
≤


≤ inf
σ∈T (Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
The proof of Theorem 4.1 is located in [11].







5 Least Favorable Models


Let the index set Θ be finite with cardinality n. Let
π be a prior distribution on (Θ, 2Θ) so that πθ :=
π[I{θ}] > 0 ∀ θ ∈ Θ. Let (Qθ)θ∈Θ be an imprecise
model on (Y,B) where (Mθ)θ∈Θ is the corresponding
family of structures. Let (D,D) be a fixed decision
space and let W be a set of loss functions (Wθ)θ∈Θ ⊂
L∞(D,D).


Definition 5.1 (qθ)θ∈Θ ∈ (Mθ)θ∈Θ is called least fa-
vorable (precise) model of (Mθ)θ∈Θ for W if


inf
σ∈T (Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)
=


= inf
σ∈T (Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
for every (Wθ)θ∈Θ ∈ W. 3


We are not primarily interested in a set of loss func-
tions but in a set of prior distributions. However, a
set of prior distributions can always be transformed
into a set of loss functions (cf. Section 6).


For F ∈ (Mθ)θ∈Θ, put


ΦF :=
{
h ∈ L∞(U , C)


∣∣ sF [h] = S[h]
}


where sF is the standard measure of F and S is the
standard upper prevision of (Qθ)θ∈Θ on (U , C).


The following lemma is an easy consequence of the
definitions. A written proof may be found in [11].


Lemma 5.2 ΦF is a norm-closed convex cone in
L∞(U , C).


For every (Wθ)θ∈Θ ⊂ L∞(D,D), define K
(
(Wθ)θ


)
as


in (2).


ΨW :=
{
K


(
(Wθ)θ


) ∣∣ (Wθ)θ ∈ W
}
⊂ L∞(U , C)


Ψ̃W denotes the smallest norm-closed convex cone in
L∞(U , C) which contains ΨW . The following lemma
is a direct consequence of Theorem 3.2 and Theorem
3.4:


Lemma 5.3 F ∈ (Mθ)θ∈Θ is least favorable for W
if and only if


sF [k] = S[k] ∀ k ∈ ΨW


Theorem 5.4 is the analogue to [6, Theorem 8.2]. It
characterises the existence of least favorable models
in full generality.


3That is the minimal Bayes risk of the imprecise model is at-
tained in the least favorable model which represents the worst-
case. (This justifies the term “least favorable”.) Remember
that our definition of the Bayes risk corresponds to a worst-
case consideration.


Theorem 5.4 The following statements are equiva-
lent:


(a) There is some F := (qθ)θ∈Θ ∈ (Mθ)θ∈Θ which is
least favorable for W.


(b) S[k1 + k2] = S[k1] + S[k2] ∀ k1, k2 ∈ Ψ̃W


Proof:
(a)⇒(b): Statement (a) and Lemma 5.3 imply ΨW ⊂
ΦF . According to Lemma 5.2, Ψ̃W ⊂ ΦF and k1 +
k2 ∈ ΦF ∀ k1, k2 ∈ Ψ̃W . Hence, for every k1, k2 ∈
Ψ̃W


S[k1 + k2] = sF [k1 + k2] = sF [k1] + sF [k2] =
= S[k1] + S[k2]


(a)⇐(b): Put s[k] := S[k] ∀ k ∈ Ψ̃W and


s[k1 − k2] := s[k1]− s[k2] = S[k1]− S[k2]


for all k1, k2 ∈ Ψ̃W . Statement (b) implies that this
is defined well. Hence, s is a linear functional on the
vector space lin(Ψ̃W) = Ψ̃W − Ψ̃W . For every k =
k1 − k2 ∈ Ψ̃W − Ψ̃W = lin(Ψ̃W),


s[k] = S[k2 + k1 − k2]− S[k2] ≤
≤ S[k2] + S[k1 − k2]− S[k2] = S[k]


According to the Hahn-Banach-Theorem ([7, Theo-
rem II.3.10]), s can be extended to a linear functional
on L∞(U , C) (again denoted by s) so that


s[h] ≤ S[h] ∀h ∈ L∞(U , C) (3)


(3) implies, that s
[
IU


]
= 1 and s[ιθ] = 1


n ∀ θ ∈ Θ
(cf. Theorem 2.5). Then, sθ : h 7→ s[nιθh] defines a
precise model (sθ)θ∈Θ on (U , C). For every decision
space (D̂, D̂) and every (Ŵθ)θ ⊂ L∞(D̂, D̂),


inf
ρ∈T (U,D̂)


R
(
(sθ)θ, ρ, (Ŵθ)θ


)
= s


[
K


(
(Ŵθ)θ


)]
(4)


according to Lemma 8.1 and


inf
ρ∈T (U,D̂)


R
(
(sθ)θ, ρ, (Ŵθ)θ


) (4)
= s


[
K


(
(Ŵθ)θ


)]
≤


(3)


≤ S
[
K


(
(Ŵθ)θ


)]
= inf


σ∈T (Y,D̂)
R


(
(Qθ)θ, σ, (Ŵθ)θ


)
according to Theorem 3.4. Hence, Theorem 4.1 im-
plies that (sθ)θ∈Θ is worst-case-sufficient for (Qθ)θ∈Θ,
i.e. there is some T ∈ T (U ,Y) so that qθ := T (sθ) ∈
Mθ ∀ θ ∈ Θ. Finally for all (Wθ)θ∈Θ ∈ W,


inf
σ∈T (Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
=


= S
[
K


(
(Wθ)θ


)]
= s


[
K


(
(Wθ)θ


)]
=


(4)
= inf


ρ∈T (U,D)
R


(
(sθ)θ, ρ, (Wθ)θ


)
≤


≤ inf
σ∈T (Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)







where the last inequality follows from Lemma 8.2. 2


6 Application of Least Favorable
Models


Situations where we are faced with one precise prior
distribution and a set of loss functions seem to be of
secondary interest. More frequently, we are interested
in situations where we are faced with an imprecise
prior and one fixed loss function. However, the second
issue can be treated as a special case of the first one:


Let Θ be a finite index set with cardinality n and
(Wθ)θ∈Θ ⊂ L∞(D,D) be a loss function. Let (Qθ)θ∈Θ


be an imprecise model on (Y,B) where (Mθ)θ∈Θ is
the corresponding family of structures. Let Π be a
coherent upper prevision on L∞(Θ, 2Θ) i.e. Π cor-
responds to a set of prior distributions P :=


{
π ∈


ba(Θ, 2Θ)
∣∣ π[a] ≤ Π[a] ∀ a ∈ L∞(Θ, 2Θ)


}
.


For some π ∈ P, put πθ := π[I{θ}] ∀ θ ∈ Θ. Let σ be
a randomisation. For the prior π, the Bayes risk is


Rπ


(
(Qθ)θ, σ, (Wθ)θ


)
=


∑
θ∈Θ


πθσ(Qθ)[Wθ] =


=
1
n


∑
θ∈Θ


σ(Qθ)[nπθWθ] = R0


(
(Qθ)θ, σ, (nπθWθ)θ


)
where R0


(
(Qθ)θ, σ, (nπθWθ)θ


)
denotes the Bayes risk


for the uniform prior π0 defined by π0[Iθ] = 1
n .


That is every prior can be absorbed in the loss func-
tion. So, we can transform the set P of priors π into a
set W of loss functions (nπθWθ)θ∈Θ. Next, Theorem
5.4 yields a necessary and sufficient condition for the
existence of a precise model which is simultaneously
least favorable for the set of loss functionsW. We may
also say that such a precise model is simultaneously
least favorable for the set of priors P.


The next theorem shows how least favorable models
can be used to deal with situations where the distri-
bution of the data as well as the prior is assumed to
be imprecise. A decision procedure is optimal if it
minimises the upper Bayes risk


RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
= sup


π∈P
Rπ


(
(Qθ)θ, σ, (Wθ)θ


)
Theorem 6.1 If (q̃θ)θ∈Θ is a simultaneously least fa-
vorable model of (Mθ)θ∈Θ for P, there is a decision
procedure σ̃ ∈ T (Y, D) which minimises


RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
and also


RΠ


(
(q̃θ)θ, σ, (Wθ)θ


)
over T (Y, D).


Proof: For every σ ∈ T (Y, D) and π ∈ P, put


Γ1(σ, π) = Rπ


(
(Qθ)θ, σ, (Wθ)θ


)
and


Γ2(σ, π) = Rπ


(
(q̃θ)θ, σ, (Wθ)θ


)
It is easy to see that σ 7→ Γj(σ, π) is convex and
lower semicontinuous for every π ∈ P and j ∈ {1, 2}.
Then, [8, Theorem 2] and simultaneous least favora-
bility implies


inf
σ∈T (Y,D)


RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
=


= inf
σ∈T (Y,D)


sup
π∈P


Γ1(σ, π) = sup
π∈P


inf
σ∈T (Y,D)


Γ1(σ, π)


= sup
π∈P


inf
σ∈T (Y,D)


Γ2(σ, π) = inf
σ∈T (Y,D)


sup
π∈P


Γ2(σ, π)


= inf
σ∈T (Y,D)


RΠ


(
(q̃θ)θ, σ, (Wθ)θ


)
(5)


Lower semicontinuity of


σ 7→ RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
and compactness of T (Y, D) ensure existence of some
σ̃ which minimises RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
(cf. [17, The-


orem 3.7]). Additionally,


RΠ


(
(q̃θ)θ, σ̃, (Wθ)θ


)
≤ RΠ


(
(Qθ)θ, σ̃, (Wθ)θ


)
=


= inf
σ∈T (Y,D)


RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
=


(5)
= inf


σ∈T (Y,D)
RΠ


(
(q̃θ)θ, σ, (Wθ)θ


)
2


Remark 6.2 It can easily be read off from the
above proof that a decision procedure σ̃ which
minimises RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
also minimises


RΠ


(
(q̃θ)θ, σ, (Wθ)θ


)
. However, the reverse statement


will not always be true.4 So, it does not suffice
to find a decision procedure σ̂ which minimises
RΠ


(
(q̃θ)θ, σ, (Wθ)θ


)
. It still has to be checked that σ̂


really minimises RΠ


(
(Qθ)θ, σ, (Wθ)θ


)
. Theorem 6.1


only states that there is a decision procedure which
solves both minimisation problems.


7 Concluding Remarks


In decision theory, straightforward updating may lead
to suboptimal decisions if the data is distributed ac-
cording to imprecise probabilities (cf. [3]). There-
fore, data-based decision theory can be seen as a mat-
ter of its own. One of the major problems in data-
based decision theory is that direct solutions of the


4In case of hypothesis testing, for example, this follows from
[1, p. 162ff].







involved optimisation problems are quite often com-
putationally intractable. Theorem 6.1 offers an op-
portunity to reduce the computational effort signifi-
cantly if the imprecise model admits a least favorable
(precise) model. Therefore, it is important to know
for a given decision problem if such a least favorable
model exists or not.


This question has been addressed by [6]. The concept
of imprecise probability developed in [6] is very close
to that one developed in [24]. From a mathematical
point of view, the only difference is that [6] assumes
that precise probabilities (i.e. linear previsions) have
to be σ-additive. Surprisingly, this appears to be a
burden which significantly reduces the applicability of
[6].5 The present article shows that the same result
as in [6] is possible without any assumption on the
involved (coherent) upper previsions if we dispense
with σ-additivity.


This offers a general tool which makes it possible to
reduce the computational effort in data-based decision
theory under imprecision. However, further research
has to be done for using it in concrete problems: As
in [14], Theorem 5.4 is only concerned with the exis-
tence of a least favorable model but an algorithm for
calculating least favorable models has not yet been
developed. After [14], a lot of work was done to con-
struct least favorable pairs in hypothesis testing for
special cases (e.g. [19], [18], [12], [1]). In the much
more general case of the present article, this is a mat-
ter of further research.


The present article might not only be interesting be-
cause of its results but also because of the applied
tools: Getting around σ-additivity in the proofs of
the present paper was possible by the use of notions
and methods of [16]. This article is probably the first
one which explicitly uses concepts of [16] in the theory
of imprecise probability. Since these concepts were es-
pecially developed for large models, it is most likely
that they can profitably be used in the theory of im-
precise probability further on. Additionally, a the-
ory of “sufficiency” is used which is not formulated
in terms of conditional probabilities. In this way, a
sufficiency theory for imprecise probabilities may be
possible which is not affected by the problems which
arise for conditional imprecise probabilities.


8 Appendix


Lemma 8.1 Assume that s is a linear prevision on
L∞(U , C) so that s[ιθ] = 1


n ∀ θ ∈ Θ. Then, sθ : h 7→


5By topological reasons, insistence on σ-additivity enforces
an additional, restrictive assumption on the involved (coherent)
upper previsions (cf. Remark 2.2 and [10]).


s[nιθh] defines a precise model (sθ)θ∈Θ on (U , C) and


inf
ρ∈T (U,D)


R
(
(sθ)θ, ρ, (Wθ)θ


)
= s


[
K


(
(Wθ)θ


)]
(6)


for every decision space (D,D) and every (Wθ)θ ⊂
L∞(D,D). K


(
(Wθ)θ


)
is defined as in (2).


For a proof of Lemma 8.1, confer [9, §6.3].


Lemma 8.2 If a precise model (pθ)θ∈Θ on (X ,A) is
sufficient for the precise model (qθ)θ∈Θ on (Y,B), then


inf
ρ∈T (X ,D)


R
(
(pθ)θ, ρ, (Wθ)θ


)
≤


≤ inf
σ∈T (Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)
for every decision space (D,D) and every (Wθ)θ ⊂
L∞(D,D).


Proof: There is some T ∈ T (X ,Y) so that T (pθ) =
qθ ∀ θ ∈ Θ. Therefore,


inf
σ∈T (Y,D)


∑
θ∈Θ


πθσ(qθ)[Wθ] =


= inf
σ∈T (Y,D)


∑
θ∈Θ


πθσ
(
T (pθ)


)
[Wθ] =


= inf
σ∈T (Y,D)


∑
θ∈Θ


πθ


(
σ ◦ T


)
(pθ)[Wθ] ≥


≥ inf
ρ∈T (X ,D)


∑
θ∈Θ


πθρ(pθ)[Wθ]


because σ ◦ T ∈ T (X , D) ∀σ ∈ T (X , D). 2


The following lemma is a consequence of the minimax
theorem [8, Theorem 2]. Here, topological properties
are crucial (Subsection 2.1.3). For a proof, confer [11].


Lemma 8.3


(a) inf
σ∈Tr(Y,D)


R
(
(Qθ)θ, σ, (Wθ)θ


)
=


= sup
(qθ)θ∈(Mθ)θ


inf
σ∈Tr(Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)
(b) inf


σ∈T (Y,D)
R


(
(Qθ)θ, σ, (Wθ)θ


)
=


= sup
(qθ)θ∈(Mθ)θ


inf
σ∈T (Y,D)


R
(
(qθ)θ, σ, (Wθ)θ


)
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