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Abstract

This article addresses questions of sensitivity of out-
put values in engineering models with respect to vari-
ations in the input parameters. Such an analysis is an
important ingredient in the assessment of the safety
and reliability of structures. A major challenge in en-
gineering applications lies in the fact that high com-
putational costs have to be faced. Methods have to be
developed that admit assertions about the sensitivity
of the output with as few computations as possible.
This article serves to explore various techniques from
imprecise probability that may contribute to achiev-
ing this goal.

Keywords. Reliability of structures, sensitivity anal-
ysis, random sets, fuzzy sets, simulation methods,
aerospace engineering.

1 Introduction

The goal of this article is to demonstrate how vari-
ous methods from imprecise probability theory can be
employed in sensitivity analysis of engineering struc-
tures. We are motivated by a research project in
aerospace engineering1 which involves the determina-
tion of the buckling load of the frontskirt of the ARI-
ANE 5 launcher under various loading and flight sce-
narios. The frontskirt is a reinforced light weight shell
structure. The computation of the decisive parame-
ter indicating failure, the load proportionality factor
(LPF), is based on a finite element model2. Part of
the project is to determine the most influential input
parameters (loads, material constants, geometry) on
the load proportionality factor in a sensitivity analy-
sis. The goal is to evaluate the design and to assess

1ICONA-project, Intales GmbH Engineering Solutions and
University of Innsbruck, supported by TransIT Innsbruck and
by EADS Astrium ST.

2The load proportionality factor is defined as the limiting
value in an incremental procedure, in which the dynamic loads
during a flight scenario are increased stepwise until breakdown
of the structure is reached.

the safety of the structure. The calculation of the out-
put variable LPF – under a given single set of input
parameters – takes about 32 hours on a high perfor-
mance computer. In addition to the extremely high
computational cost, the LPF may depend in a non-
differentiable manner on some of the input parame-
ters, especially variations in the geometry. A classical
sensitivity analysis of the complete structure is cur-
rently out of reach.

Engineering information on the variability of the in-
put parameters usually consists of a central value and
a coefficient or range of variation. The basic strategy
for arriving at a sensitivity assessment will be to suc-
cessively freeze the input parameters and study the
effect on the variability of the output. We wish to
do this without artificial parametric assumptions and
with as few calls of the finite element program as pos-
sible. We will explore the usability of methods from
imprecise probability theory for this purpose. In par-
ticular, we shall model the input variability by means
of

– random sets and Tchebycheff’s inequality;

– fuzzy sets and Hartley-like measures;

– intervals and sampling from a Cauchy distribution;

– standard Monte-Carlo simulation and resampling.

A detailed description of the respective methods will
follow in four sections, with a final section devoted to
a comparison of the methods. The question of mod-
elling correlations between the input variables will be
addressed in the appropriate sections. We shall exem-
plify the results with the aid of a simplified finite ele-
ment model simulating part of a space craft launcher
(Figure 1). The computational cost for the simplified
model is one hour per call of the program.

In the sensitivity analysis, up to 17 input parameters
were taken into account. A tentative description of
the meaning of the parameters as well as their nominal
values can be read off from Table 1.



Figure 1: Simplified finite element model.

For background material on sensitivity analysis we re-
fer to the Special Issue [9], in particular the survey
article [10] and to [8], for random sets, to [18, 19],
for random and fuzzy sets, to [5, 14], for probability
boxes, to [3], for a review on probabilistic treatment
of uncertainty in structural engineering as well as in-
formation on variability of typical input parameters,
to [24].

i Parameter Xi Mean µi

1 Initial temperature 293 K
2 Step1 thermal loading cylinder1 450 K
3 Step1 thermal loading cylinder2 350 K
4 Step1 thermal loading cylinder3 150 K
5 Step1 thermal loading sphere1 150 K
6 Step1 thermal loading sphere2 110 K
7 Step2 hydrostatic pressure cylinder3 0.4 MPa
8 Step2 hydrostatic pressure sphere1 0.4 MPa
9 Step2 hydrostatic pressure sphere2 0.4 MPa
10 Step3 aerodynamic pressure −0.05 MPa
11 Step4 booster loads y-direction node1 40000 N
12 Step4 booster loads y-direction node2 20000 N
13 Step4 booster loads z-direction node1 3.e6 N
14 Step4 booster loads z-direction node2 1.e6 N
15 Step4 mechanical loads x-direction 100 N
16 Step4 mechanical loads y-direction 50 N
17 Step4 mechanical loads z-direction 300 N

Table 1: Description of input parameters no. 1 – 17.

2 Random set methods

It has been argued in [20, 21] that random intervals
constructed by Tchebycheff’s inequality can serve as
a non-parametric model of the variability of a param-
eter, given its mean value and variance as sole in-
formation. We begin with the univariate case of a
real-valued random variable X. Let µ = E(X) be its
expectation and σ2 = V(X) be its variance. Tcheby-
cheff’s inequality asserts that

P
(
|X − µ| > dα

)
≤ α, dα = σ/

√
α. (1)

Equipping the unit interval (0, 1] with the uniform
probability distribution, the non-parametric confi-

dence intervals

Iα = [µ− dα, µ + dα], α ∈ (0, 1] (2)

define a random set. By construction, the following
formulas for the belief in the set Iα and the plausibility
of its complement Ic

α hold:

P (Iα) =
∫
{β∈(0,1]:Iβ⊂Iα} dβ = 1− α ≤ P (Iα),

P (Ic
α) =

∫
{β∈(0,1]:Iβ∩Ic

α 6=∅}
dβ = α ≥ P (Ic

α).

This shows that the random set description provides
a conservative assessment of the variability X. In
applications, the range of the parameter X may be
confined to a compact interval [xmin, xmax]. In this
case, the random set will be truncated to

Iα = [(µ− dα) ∨ xmin, (µ + dα) ∧ xmax].

In the multivariate case X = (X1, . . . , Xd) where each
parameter Xi is modelled as a random set as in (2),
we form the joint random set (assuming random set
independence)

α = (α1, . . . , αd) → Aα = I1
α1
× . . .× Id

αd

again with the uniform distribution on the probability
space (0, 1]d.

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a random
set Aα, α ∈ (0, 1]d (equipped with the uniform prob-
ability distribution), the output variable is given by
the random set g(Aα), α ∈ (0, 1]d. A visualization of
the output can be obtained by means of the upper and
lower distribution functions (or probability box, [3])

F (x) = P
(
α : g(Aα) ∩ (−∞, x] 6= ∅

)
F (x) = P

(
α : g(Aα) ⊂ (−∞, x]

)
.

(3)

In the numerical evaluation, the joint random set is
approximated by a finite random set with focal ele-
ments

I1
α1
× . . .× Id

αd
, αj ∈ { 1

n , 2
n , . . . , 1},

each with probability weight n−d. The input-output
function is evaluated as follows: First, an interval
Q ⊂ Rd is determined that bounds the relevant range
of the input variables X. Next, the values of the func-
tion g are computed at the md nodes of a uniform
grid on Q. The output g(Q) is approximated by a re-
sponse surface ĝ(Q) obtained by multilinear splines.
More precisely, to compute the image of one of the
sets Aα, ĝ(Q) is evaluated at all grid points inside
Aα and all points on its edges intersecting one of the
grid lines. The interval g(Aα) is approximated by



the minimum and maximum value thus obtained. Fi-
nally, the probability box (3) is calculated by adding
the weights when appropriate. The essential compu-
tational effort thus amounts to md calls of the finite
element program.

Figure 2 shows the result of the calculation of the
load proportionality factor (LPF) where the three in-
put parameters X3, X13, X14 (temperature cylinder 2,
booster load node 1 in z-direction, booster load node
2 in z-direction) were kept variable. The variance
σ for the Tchebycheff model was adjusted such that
the base intervals [xmin, xmax] for each of the parame-
ters was symmetric around the corresponding mean µ
with spread ±0.15µ. In this case, d = 3 and we chose
m = 5 so that 125 calls to the FE-program were re-
quired.

Figure 2: Probability box: LPF, 3 input variables.

Example 1 To assess the sensitivity of the load pro-
portionality factor LPF with respect to the parame-
ters X3, X13, X14 we again use the Tchebycheff model
for each of the parameters with spread 0.15 times their
mean values. Then we successively set one of the re-
sulting σ3, σ13, σ14 equal to zero (while keeping the
others at their given value), go through the calcula-
tion indicated above and plot the resulting probabil-
ity box (solid lines – the thin lines indicate the un-
perturbed result from Figure 2). This is displayed in
Figure 3 and shows that setting σ13 = 0 produces the
biggest reduction of the width of the probability box,
while setting σ14 = 0 has little effect. We infer that
the parameter X14 has the least influence on the vari-
ability of the response, while X13 exerts the biggest
influence.

The pinching strategy in the case of probability boxes
is further explicated in [4] and applied in [21]. Ques-
tions of dependence or interactivity of the input vari-
ables are left aside in this section. Dependence could
be modelled by copulas on the underlying probability
space (0, 1]d or by restrictions on the set of probability
measures on Rd defined by the random set.

3 Fuzzy sets

In this section, one-dimensional input variables will be
modelled as normalized fuzzy numbers, that is as fuzzy
subsets B of the real line with upper semi-continuous

Figure 3: Probability box: LPF, frozen variables.

membership function πB(x) that attains the value 1.
The α-level set of B is the set

Bα = {x ∈ R : πB(x) ≥ α}, α ∈ (0, 1].

In the multivariate case, the non-interactive joint
fuzzy set is defined as follows. Given d univariate
fuzzy sets B1, . . . , Bd, the joint fuzzy set has the α-
level sets

Bα = B1
α × . . .×Bd

α, α ∈ (0, 1].

Interactivity will be modelled by certain parametric
restrictions on the α-level sets. To avoid combinato-
rial complications, we shall treat interactivity of at
most two out of the d variables. Since an α-level
set of the form Bi

α × Bj
α is a homothetic image of

the unit square, it suffices to give the definitions for
B1

α = B2
α = [0, 1]. Following [27], interactivity will be

modelled by replacing the unit square by a diamond-
shaped region, symmetric around one of the diagonals.
Let 0 ≤ ρ ≤ 1 and define the points P1, . . . , P4 by

P1 = (ρ/2, ρ/2), P2 = (1− ρ/2, ρ/2),
P3 = (1− ρ/2, 1− ρ/2), P4 = (ρ/2, 1− ρ/2).

Interactivity of positive degree ρ is modelled by tak-
ing the rhombus with corners {(0, 0), P2, (1, 1), P4}
as joint level set, while interactivity of negative de-
gree −ρ is modelled by the rhombus with corners
{(0, 1), P1, (1, 0), P3} as joint level set (Figure 4).



Figure 4: Positive/negative interactivity.

Let g : Rd → R be a continuous function. If the input
variables X = (X1, . . . , Xd) are modelled as a non-
interactive or interactive fuzzy set with α-level sets
Bα as above, Zadeh’s extension principle yields the
output variable as the fuzzy number with level sets
g(Bα), α ∈ (0, 1].

While a fuzzy set can be interpreted as a random set
(cf. e. g. [5]) and the procedure appears similar to
the one of Section 2, there is a fundamental differ-
ence in the multivariate case: in fuzzy set theory,
only α-level sets of the same level are combined to
produce the joint fuzzy set, while for random sets,
the focal elements are obtained as products with re-
spect to any combination and thus are indexed by the
product space (0, 1]d.

Example 2 In the assessment of the sensitivity of
the load proportionality factor LPF with respect to
the input parameters X3, X13, X14, these parameters
were modelled as symmetric triangular fuzzy num-
bers, with central values µi from Table 1 and spread
±0.15µi as before. The numerical calculation is based
on the response surface method explained in Exam-
ple 1. The images of the α-level sets are again com-
puted by piecewise multilinear combination. To han-
dle possible lack of monotonicity of the function g, we
start with level α = 1 and go the way down to α = 0,
insuring at each step that the approximations satisfy
g(Aβ) ⊂ g(Aα) for α < β.

In the non-interactive case, the procedure for deter-
mining the sensitivity of the output with respect to
the input variables is the same as in Example 1.
The initial calculation is performed with proportional
spreads ±0.15µi. Then we successively replace one of
the triangular fuzzy numbers by its crisp central value
µi, and compute the output as a fuzzy number. The
result gives a good visual representation of the change
of variability. This can be quantified using e. g. the
Hartley-like measure

HL(B) =
∫ 1

0

log
(
1 + λ(Bα)

)
dα

of fuzzy sets B as proposed by [14] (see also [1] for
further implementation of this idea in sensitivity anal-
ysis and [6] for interval-valued indices). The result is

Figure 5: Fuzzy sets: LPF, frozen variables, noninter-
active case.

depicted in Figure 5, where the outer contour is the
membership function of the fuzzy LPF with all input
parameters fuzzy, while the shaded region is bounded
by the membership function of the fuzzy LPF with
successively frozen input parameters. It confirms the
observations obtained by the random set method: X13

is the most influential parameter, followed by X3 and
then X14. This can be explained by the model set-up:
X13 refers to a large booster load on one side of the
frontskirt, while X14 signifies a much smaller booster
load on the opposite side. The Hartley-like measures
displayed in Table 2, though, show that some, albeit
small, influence of parameter X14 is detectable.

Fuzzy set HL-measure
no fixing 0.1481
X13 fixed 0.0398
X14 fixed 0.1430
X3 fixed 0.1268

Table 2: Hartley-like measures of outputs, non-
interactive input.

Example 3 This example serves to show how the ef-
fect of possible correlations between two of the input
parameters on the sensitivity can be assessed. Corre-
lation will be interpreted here as degree of interactiv-
ity as described above. In this example, we assume a
degree of interactivity ρ = 0.98 between parameters
X13 and X14. The remaining parameters are treated
as non-interactive. The α-level sets are of cylindrical
shape with a rhombic base Rα, say. Their images are
again computed by piecewise multilinear combination.
Otherwise, the procedure of successively freezing vari-
ables is similar: For example, when X13 is frozen at
its central value µ13, the interactivity restricts X14 to
vary along the intersection of Rα with the line through



µ13 parallel to the x14-axis, while X3 varies in its orig-
inal α-level interval.

The result is shown in Figure 6; the meaning of the
contour and the shaded region is the same as in Fig-
ure 5. The outcome confirms the prominence of pa-

Figure 6: Fuzzy sets: LPF, frozen variables, interac-
tive case.

rameter X13; as a consequence of the correlation,
parameter X14 is seen to exert a comparable influ-
ence. The result also demonstrates that the correla-
tion changes the sensitivity of the output with respect
to parameter X3. Table 3 shows the Hartley-like mea-
sures of the fuzzy output under successive freezing of
input variables. One may note that the study of the
influence of correlations can be implemented in the
fuzzy approach with ease.

Fuzzy set HL-measure
no fixing 0.1357
X13 fixed 0.0287
X14 fixed 0.0329
X3 fixed 0.1011

Table 3: Hartley-like measures of outputs, interactive
input.

As in Example 1, the computational effort using the
response surface consisted in 125 calls of the finite
element program. The vertical jumps of the mem-
bership function in Figure 6 indicate that the output
does not depend monotonically on the input variables.
Closer inspection (done by producing an array of two-
dimensional plots of the partial maps Xi → LPF)
showed that this is indeed the case. Therefore, the
accuracy of the method using just 125 grid values is
in question. A number of additional explicit evalua-
tions showed that the accuracy of the boundaries of
the α-level sets for the LPF is in the range of ±0.02
in absolute value.

4 Interval bounds

This section is devoted to interval estimates of input
and output parameters. Suppose that the variability
of each input parameter Xi is described by an interval
[µi−∆i, µi + ∆i] of spread ∆i around a central value
µi. It has been argued in [16], that an estimate of
the output interval can be obtained by Monte Carlo
simulation using the Cauchy distribution.

The underlying theory from [16] is as follows. Suppose
we wish to estimate the difference

∆y = g(x1, . . . , xd)− g(µ1, . . . , µd)

where |∆xi| = |xi − µi| ≤ ∆i. Linearization around
the mean value gives

|∆y| ≤ ∆ =
d∑

i=1

|ci|∆i, ci =
∂g

∂xi

(
µ1, . . . , µd

)
.

If the Xi are independent random variables following
a Cauchy distribution with scale parameter ∆i, then
Y = c1X1 + . . . + cdXd obeys a Cauchy distribution
with scale parameter ∆. This offers the possibility
of computing the bound ∆ on the output spread by
Monte Carlo simulation.

The algorithm runs along the following lines. To
produce a single realization, a d-dimensional sample
(z1, . . . , zd) of Cauchy distributed variables with scale
parameters 1 is taken. Setting K = max1≤i≤d |zi|,
one has that δi = ∆izi/K has a Cauchy distribution
with scale parameter ∆i/K. Putting xi = µi + δi it
follows that

Z = K
(
g(x1, . . . , xd)− g(µ1, . . . , µd)

)
is a realization of a Cauchy distributed variable with
desired scale parameter ∆ (this is true exactly when
g is linear and otherwise approximately). An n-fold
repetition yields the Monte Carlo sample of size n
of the variable Z. Fitting a Cauchy distribution –
e. g. by the maximum likelihood method – produces
an estimate of the spread ∆ of the output interval
[g(µ1, . . . , µd)−∆, g(µ1, . . . , µd) + ∆]. The computa-
tional effort for this estimate is n calls of the finite
element program and thus independent of the dimen-
sion d. This offers the possibility to include a larger
number of input variables in the analysis.

Example 4 In this calculation, 17 input parameters
were included with nominal values displayed in Ta-
ble 1. The spreads ∆i were taken as 0.15-times the
nominal values µi. We used a direct Monte Carlo
method to produce a sample of size n = 100. The
value of the load proportionality factor LPF was ob-
tained as µ = g(µ1, . . . , µd) = 3.5443. The simulation
resulted in an estimate for its spread of ∆̂ = 0.2924.



In the next step, the distribution of the resulting
spread ∆ was estimated by resampling. We employed
10000 random subsamples of size 100 (with repeti-
tion), following the suggestions in [23]. This resulted
in a 95%-confidence interval for ∆ of CI0.95(∆̂) =
[0.2281, 0.3685]. The essential computational effort
consisted in n = 100 calls of the finite element pro-
gram.

Remark 5 A sensitivity analysis could be based on
this method, again by freezing variables successively.
It is possible to reduce computational cost by using
the same Monte Carlo sample and approximating the
frozen variables by a truncated Cauchy distribution.
More precisely, instead of setting ∆1 = 0, say, we se-
lect the random numbers (x2, . . . , xd) computed above
from the part of the population (x1, x2, . . . , xd) which
satisfies |δ1| < ε for a suitably chosen small ε. This
is justified, because the resulting truncated (d − 1)-
dimensional random variables converge in distribution
to the ones with ∆1 frozen at the value 0 as ε → 0.
However, successive simultaneous freezing of two or
more variables requires repeated Monte Carlo simu-
lation because the sample size would be too small for
repeated truncation.

A more troublesome observation concerns the accu-
racy of the Cauchy method in our situation where the
output function g is a nonlinear finite element com-
putation resulting in the LPF. It turned out that the
simulations of the auxiliary variable Z actually failed
the KS-test for being Cauchy distributed. This means
that our output function g is too far away from linear-
ity and thus puts the accuracy of the Cauchy method
into question in this context.

5 Monte Carlo simulation

To complete the analysis, we have a glimpse at direct
Monte Carlo simulation in sensitivity analysis. Meth-
ods like scatterplots (input – output) and computing
the weighted contribution of each input variable to the
variance of the output are commonplace and will not
be discussed here. These methods suffer the problem
that hidden interactions may have a significant effect
on the decomposition of the variance (see, however,
[2]). We therefore turn to a method which intends
to remove the influence of co-variates on the correla-
tion between a given input variable Xi and the output
variable Y . This method is based on the partial rank
correlation coefficient (PRCC).

We recall that partial correlation between two ran-
dom variables Xi and Y given a set of co-variates
Xri = {X1, . . . , Xi−1, Xi+1, . . . , Xd} is defined as the
correlation between the two residuals eXi·Xri and
eY ·Xri

obtained by regressing Xi on Xri and Y on

Xri , respectively. More precisely, one first constructs
the two regression models

X̂i = α0 +
∑
j 6=i

αjXj , Ŷ = β0 +
∑
j 6=i

βjXj ,

obtaining the residuals

eXi·Xri = Xi − X̂i, eY ·Xri = Y − Ŷ .

Since eXi·Xri
and eY ·Xri

are those parts of Xi and Y
that remain after subtraction of the best linear esti-
mates in terms of Xri, the partial correlation coeffi-
cient

ρXi,Y ·Xri = ρ(eXi·Xri , eY ·Xri)

quantifies the linear relationship between Xi and Y
after removal of any part of the variation due to the
linear influence of Xri. Applying a rank transfor-
mation to the variables Xi and Y leads to the partial
rank correlation coefficient (PRCC). For further back-
ground on PCCs and PRCCs, see [7, 11, 22].

Example 6 To estimate the influence of each of the 17
input parameters from Table 1 on the output LPF, we
performed a Monte Carlo simulation of size n = 100
with uniformly distributed input variables (on the in-
tervals as in Example 4), using Latin hypercube sam-
pling, an efficient stratified sampling strategy.

To obtain a sample of size n, the Latin hypercube
sampling plan divides the range of each variable Xi

into n disjoint subintervals of equal probability. First,
n values of each variable Xi, i = 1, . . . , d, belonging
to the respective subintervals are randomly selected.
Then the n values for X1 are randomly paired with-
out replacement with the n values for X2. The re-
sulting pairs are then randomly combined with the n
values of X3 and so on, until a set of n d-tuples is
obtained. This set forms the Latin hypercube sam-
ple. The advantage of Latin hypercube sampling is
that sampled points are evenly distributed through
design space, thereby covering regions possibly impor-
tant for the input-output map which might be missed
by direct Monte Carlo simulation. It can be shown
that the variance of an estimator based on Latin hy-
percube sampling is asymptotically smaller than the
variance of the direct Monte Carlo estimator, and pos-
sibly markedly smaller when the input-output map is
partially monotonic [8, 17, 26].

For additional accuracy in view of the rather small
sample size we subjected the simulated variables to
correlation control (see [12, 13]). This procedure con-
sists in a rearrangement of the originally simulated
values such that the resulting empirical rank correla-
tion matrix is close to diagonal.

The resulting PRCCs can be seen in Figure 7. For fur-
ther statistical confirmation, we performed a resam-



pling procedure as in Example 4, producing bootstrap
confidence intervals for the partial rank correlation co-
efficients as displayed in Figure 8. Accordingly, only
the PRCCs of the parameters X1, X3, X9, X13 and
X14 test to be nonzero.

Figure 7: Partial rank correlation coefficients.

The outcome confirms the results of the sensitivity
analysis in the previous sections: Among the param-
eters X3, X13 and X14, the one with the biggest in-
fluence is X13, followed by X3 and X14.

We also ran various tests with correlated input as in
Example 3 which confirmed the observed sensitivities.
However, each test required a new Monte Carlo sim-
ulation with sample size n = 100. In addition, we
computed Sobol indices [25] for groups of variables;
this, however, again requires additional Monte Carlo
simulations.

6 Summary and Conclusions

Starting from a research project in aerospace engi-
neering one of whose goals was to determine the sen-
sitivity of the buckling load of the frontskirt of the
ARIANE 5 launcher with respect to certain input pa-
rameters, we explored various methods from proba-
bility and imprecise probability theory. In view of the
excessive computational costs of a single run of the
finite element program, the major challenge was to
develop methods with as few calls of the program as
possible. We used a simplified model of the launcher
for the numerical tests of the methods.

The methods under scrutiny were random sets and
Tchebycheff’s inequality, fuzzy sets and Hartley-like
measures, intervals and sampling from a Cauchy dis-
tribution, standard Monte-Carlo simulation and re-
sampling. Criteria for the evaluation are

– computational effort

Figure 8: Partial rank correlation coefficients, confi-
dence intervals.

– applicability to large scale problems

– accuracy

– avoidance of tacit assumptions

– reliability and clarity of interpretation

– possibility of analyzing correlated input.

Generally speaking, the Monte Carlo simulation
methods are computationally least expensive. For our
sensitivity study, a sample size of n = 100 appeared
sufficient. In addition – as is well known – the sample
size can be chosen independently of the number of in-
put variables, so that we could include all 17 variables
in our study. These methods are clearly applicable to
large scale problems. Disadvantages are that para-
metric assumptions on the input variables have to be
made and that freezing of variables requires repeti-
tion of the n = 100 simulations. Thus computing
PRCCs plus resampling is possible irrespective of the
problem scale, but variance decomposition by freez-
ing variables is not. The same applies to analyzing
sensitivity with respect to input correlations, which
requires repetition of the simulation as well. The nu-
merical accuracy of the Monte Carlo simulation is well
known to be of order 1/

√
n times the standard devi-

ation of the simulated variable. In view of the coef-
ficients of variation which were in the range of 10%
this appeared sufficient for the sensitivity study.

We emphasize that the results of a Monte Carlo sim-
ulation are amenable to resampling, which introduces
little additional computational effort (no further eval-
uations of the costly input-output map are needed).
In this way, bootstrap confidence intervals can be ob-
tained that may serve as statistical estimates of the
accuracy of the results. For example, we estimated
the bias of each partial rank correlation coefficient,
that is, the absolute value of the difference of the mean



of the resampled data and the initial estimate. The
estimated bias resulted to be less than 2% of the ini-
tial estimate. Further, the significance of the resulting
ranking of the influence of the respective input pa-
rameters can be assessed by comparing the bootstrap
confidence intervals.

The Cauchy method is a simulation method for es-
timating the spread of the output interval. The re-
sulting estimate is non-parametric in as much as only
the spreads of the input variables enter. As a subcase
of Monte Carlo simulation, everything that has been
said above applies here as well. A problematic point
is that the method is derived under the assumption
that the output function is approximately linear. In
our case, the output function is substantially nonlin-
ear. By means of repeated simulations we observed a
quite substantial lack of accuracy of the estimate of
the output spread in our case. Namely, direct Monte
Carlo simulations of size n = 100 of the output vari-
able LPF, with uniformly distributed input variables,
produced an output range of [3.45, 3.65]. This indi-
cates that the range was largely overestimated by the
Cauchy method (see Example 4). This could possibly
be overcome by the suggestion of [16] of repeated bi-
section of the input interval, though at an increase in
computational cost.

Both in the fuzzy set and random set methods, the
output α-level sets and focal sets, respectively, are
computed by searching for the maximum and mini-
mum of the corresponding output range. Sufficient
accuracy can only be obtained by a larger number of
calls of the output function, evaluated on a grid of
input data. In addition, the grid size increases expo-
nentially with the number of input variables. These
methods appear feasible only in the case of medium
size problems and a small number of input variables.
Monotonicity or partial monotonicity of the output
function increases accuracy and helps reducing the
number of computations required.

Test runs with finer grids showed that the numerical
error of the interpolation (i. e. replacing the true out-
put function by a piecewise bilinear response surface)
was less than 1%, thus definitely satisfactory. How-
ever, the optimization error introduced when calculat-
ing the boundaries of the output level sets turned out
to be about ±0.02 in absolute value, which is around
10 - 20% of the spread of the base level (see end of
Section 3).

The numerical error in the boundaries of the output
level sets appears less influential in the random set
method. This is due to a certain averaging effect. In-
deed, in the fuzzy model the computation of ` output
level sets corresponds to ` input level sets, whereas in

the random set model – at least when using random
set independence – a combination of `d input focal
sets enters (d the number of variables).

Both methods are essentially non-parametric. The
random set model we used is generated by Tcheby-
cheff’s inequality and hence non-parametric by defini-
tion. In the fuzzy set model, we used triangular fuzzy
numbers as input. These can be seen as a collection of
intervals of linearly changing length. The α-level sets
resulting from the computation determine the output
range when the input varies over d-dimensional inter-
vals of length proportional to 1− α.

The fuzzy model in combination with the response
surface technique has an additional advantage: it al-
lows the a-posteriori introduction of interactivity be-
tween the input variables without the need for new
calls of the output function. The effect of interactive
input can simply be evaluated by interpolation in the
response surface.

We finally comment on the practicality of upscaling
to the full problem. This remains a major challenge.
The computational structure of the given problem
consists in a nonlinear, incremental procedure. The
LPF is obtained as the ultimate load value beyond
which the computed solution cannot be prolonged.
This may be either due to a bifurcation point or to
a breakdown of the structure. We currently pursue
two strategies. One strategy is a perturbation method
that replaces the full model by a quadratic approxima-
tion when a bifurcation point is reached. This is based
on Koiter’s asymptotic analysis of post-buckling of
shells, see e. g. [15]. The sensitivity analysis would be
done with the asymptotic model in place of the full
model. The second strategy is to start the sensitiv-
ity analysis at a later stage of the iterative procedure.
Both methods require to access the finite element code
at a deeper level. A certain difficulty which we expect
to encounter stems from the fact that the incremental
procedure is path dependent. Thus varying the input
parameters late in the process could be misleading, as
initial variations might result in a quite different path
to breakdown.
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