

5th International Symposium on Imprecise Probability: Theories and Applications, Prague, Czech Republic, 2007


Regular finite Markov chains with interval probabilities


Damjan Škulj
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Abstract


In Markov chain theory a stochastic matrix P is reg-
ular if some matrix power Pn contains only strictly
positive elements. Regularity of transition matrix of
a Markov chain guarantees the existence of a unique
invariant distribution which is also the limiting distri-
bution. In the present paper a similar result is shown
for the generalized Markov chain model that replaces
classical probabilities with interval probabilities. We
generalize the concept of regularity and show that for
a regular interval transition matrix sets of probabil-
ities corresponding to consecutive steps of a Markov
chain converge to a unique limiting set of distribu-
tions that only depends on transition matrix and is
independent of the initial distribution. A similar con-
vergence result is also shown for approximations of
the invariant set.
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1 Introduction


Markov chains are one of the most important tools to
model random phenomena evolving in time. They are
enough simple to allow detailed description but also
enough general to allow many possibilities for appli-
cations (see [6]). A weak point of the most widely
used model is that transition probabilities have to be
constant and precisely known.


An attempt to relax this restriction was proposed in
[7], where classical probabilities are replaced by in-
terval probabilities. The approach presented there
extends a previous approach given in [5], where the
assumption of precisely known initial and transition
probabilities is relaxed so that probability intervals
are used instead of precise probabilities. Their model
is based on the assumption that constant classical
probabilities rule the process but only approximations
are known instead of precise values. Several estimates
based on this model are also given in [2] and [4].


Our approach presented in [7] uses the more gen-
eral model of interval probabilities based on Weich-
selberger’s theory (see [10] or [9]) instead of simple
probability intervals, and omits the assumption that
transition probabilities that rule the process are con-
stant in time. In the sequel we refer to this model
as Markov chains with interval probabilities (MCIP).
The model allows computation of possible probability
distributions at consecutive steps and estimation of
invariant distributions, which are of great importance
in Markov chain theory. But there is a fundamental
problem of those estimations that the sets of distri-
butions corresponding to further steps become much
more complicated than sets representable by interval
probabilities. A way to overcome this problem is the
use of approximations.


In this paper we examine the relationship between in-
variant sets of distributions and long term behaviour
of generalized Markov chains. In the classical theory
an important class of Markov chains, so called regu-
lar chains, has the property that its unique invariant
distribution is also the limiting distribution to which
probabilities converge after long time. Here we gener-
alize the concept of regularity to MCIP and show that
generalized regular Markov chains have a similar con-
vergence property. Moreover, we show a similar result
for a class of approximations with interval probabili-
ties.


The paper has the following structure. In Section 2
we introduce basic concepts of the theory of interval
probabilities and MCIP. In Section 3 we give our main
results on convergence for MCIP.


2 Markov chains with interval
probabilities


2.1 Interval probabilities


First we introduce basic elements of interval proba-
bility due to Weichselberger ([10]), some of them in







a simplified form. Let Ω be a non-empty set and A
a σ-algebra of its subsets. The term classical proba-
bility or additive probability will denote any set func-
tion p : A → R satisfying Kolmogorov’s axioms. Let
L and U be set functions on A, such that L ≤ U
and L(Ω) = U(Ω) = 1. The interval valued function
P ( . ) = [L( . ), U( . )] is called an interval probability.


To each interval probability P we associate the set M
of all additive probability measures on the measurable
space (Ω,A) that lie between L and U . This set is
called the structure of the interval probability P . The
basic class of interval probabilities are those whose
structure is non-empty. Such an interval probability
is denoted as R-field. The most important subclass
of interval probabilities, F-fields, additionally assumes
that both lower bound L and upper bound U are strict
according to the structure M:


L(A) = inf
p∈M


p(A) and U(A) = sup
p∈M


p(A) (1)


for every A ∈ A.


The above property is in a close relation to coherence
in Walley’s sense (see [8]). The difference is that the
definition of coherence allows finitely additive prob-
abilities while Weichselberger’s model only allows σ-
additive probabilities. However, in the case of finite
probability spaces, both terms coincide, because fi-
nite additivity and σ-additivity then coincide. The re-
quirement (1) implies the relation U(A) = 1−L(¬A)
for every A ∈ A, and therefore, only one of the bounds
L and U is needed. Usually we only take the lower
one. Thus, an F-field is sufficiently determined by the
triple (Ω,A, L).


MCIP require several approximations involving lower
expectations with respect to sets of probabilities. Let
C be a set of probability measures on (Ω,A) and let
a random variable X : Ω → R be given. The lower
and the upper expectation ECX and ECX of X with
respect to C are defined as the infimum and supremum
of mathematical expectations of X with respect to
members of C:


ECX = inf
p∈C


EpX


ECX =sup
p∈C


EpX.


An important class of interval probabilities are those
whose lower bounds L are 2-monotone (convex, su-
permodular), i.e. for every A,B ⊆ Ω


L(A ∪B) + L(A ∩B) ≥ L(A) + L(B). (2)


If equality holds in the above equation the set func-
tion L is said to be modular, which in the case where
L(∅) = 0 is equivalent to finite additivity.


In the finite case, 2-monotonicity implies the F-
property, which is then equivalent to coherence that
is always implied by 2-monotonicity. Moreover, in the
case of a 2-monotone coherent lower probability L on
a finite measurable space, the lower and the upper ex-
pectation operators with respect to the corresponding
structure can be found in terms of Choquet integral
with respect to L and the corresponding upper prob-
ability U respectively, where Choquet integral with re-
spect to a set function L is defined as


∫


Ω


X dL =
∫ 0


−∞
(L(X > t)− L(Ω)) dt


+
∫ ∞


0


L(X > t) dt.


The right hand side integrals are both Riemann inte-
grals. Further, if L is an additive measure, Choquet
integral coincides with Lebesgue integral.


Let Ω be a finite set. If M is the structure of an
F-field P = (Ω,A, L) with L 2-monotone, we have


EMX =
∫


Ω


X dL (3)


for every random variable X. (For the proof see
e.g. [3], and note that for an infinite Ω, instead of
the structure M, the set of all finitely additive mea-
sures dominating L would be required for the above
equality.) In fact, the equality in (3) for every X is
equivalent to 2-monotonicity if the lower expectation
is taken with respect to the set of all finitely addi-
tive measures dominating L. For a non-2-monotone
L Choquet integral is in general lower than the lower
expectation.


2.2 Markov chains with interval probabilities


Now we introduce the framework of MCIP model pro-
posed in [7]. Let Ω be a finite set with elements
{ω1, . . . , ωm} and 2Ω the algebra of its subsets. Fur-
ther let


X0, X1, . . . , Xn, . . . (4)


be a sequence of random variables such that


P (X0 = ωi) = q(0)(ωi) =: q0
i ,


where q(0) is a classical probability measure on (Ω, 2Ω)
such that


L(0) ≤ q(0), (5)


where Q(0) = (Ω, 2Ω, L(0)) is an F-probability field.
Thus, q(0) belongs to the structure M(0) of Q(0).
This means that initial probability distribution is not
known precisely, but only a set of possible distribu-
tions is given as a structure of an F-field.







Transition probabilities in a classical finite Markov
chain can be given by a matrix whose (i, j)-th entry
represents the probability that the process that is in
the state ωi at time n will be in the state ωj at time
n + 1. Each row of a transition probability matrix is
then a probability distribution on (Ω, 2Ω).


The idea of the generalized transition matrix is to
replace classical probability distributions in rows with
interval probabilities. Thus, suppose that


P
(
Xn+1 = ωj | Xn = ωi,


Xn−1 = ωkn−1 , . . . , X0 = ωk0


)


= pn+1
i (ωj) =: pn+1


ij , (6)


where pn+1
ij is independent of X0, . . . , Xn−1 for all n ≥


1, and
Li ≤ pn+1


i , (7)


where Pi = (Ω, 2Ω, Li), for 1 ≤ i ≤ m, is an F-
probability field. Thus, pn+1


ij are transition proba-
bilities at time n + 1, and they are not assumed to
be constant in n. Instead, on each step they are only
supposed to satisfy the inequality (7), where Li are
constant in time.


The above generalization of transition matrices sug-
gests the following generalization of the concept of
stochastic matrix to interval probabilities. Let P =
[P1 . . . Pm]T where Pi are F-fields for i = 1, . . . ,m.
We will call such P an interval stochastic matrix. The
lower bound of an interval stochastic matrix is simply
PL := [L1 . . . Lm]T , where Li is the lower bound of
Pi and the structure of an interval stochastic matrix
is the set M(P ) of stochastic matrices p = (pij) such
that pi ≥ Li, where pi, for i = 1, . . . , m, is the clas-
sical probability distribution on (Ω, 2Ω) generated by
pi(ωj) = pij for j = 1, . . . , m.


To represent an F field on a given probability space,
one value has to be given for each event A; usually,
this is the lower probability L(A) of A. Thus, a row
of an interval stochastic matrix can be represented as
a row of 2m − 2 values, where ∅ and Ω, whose lower
probabilities are always 0 and 1 respectively, are ex-
cluded. All other events correspond to each column in
a given order. In general, this requires m(2m−2) val-
ues for the transition matrix and 2m−2 values for the
initial distribution. The (i, j)-th entry of the transi-
tion matrix is then the lower probability of transition
from the state ωi to the set Aj .


We demonstrate this by the following example.


Example 1. Take Ω = {ω1, ω2, ω3}. The alge-
bra 2Ω contains six non-trivial subsets, which we de-
note by A1 = {ω1}, A2 = {ω2}, A3 = {ω3}, A4 =
{ω1, ω2}, A5 = {ω1, ω3}, A6 = {ω2, ω3}. Thus, besides


L(∅) = 0 and L(Ω) = 1 we have to give the values
L(Ai) for i = 1, . . . , 6. Let the lower probability L of
an interval probability Q be represented through the
n-tuple


L = (L(A1), L(A2), L(A3), L(A4), L(A5), L(A6))
(8)


and take L = (0.1, 0.3, 0.4, 0.5, 0.6, 0.7). Further we
represent the interval transition matrix P by a ma-
trix with three rows and six columns, each row repre-
senting an element ωi of Ω and the values in the row
representing the interval probability Pi through its
lower probability Li. Take for example the following
matrix:


PL =






0.5 0.1 0.1 0.7 0.7 0.4
0.1 0.4 0.3 0.6 0.5 0.8
0.2 0.2 0.4 0.5 0.7 0.7



 . (9)


The probability of transition from ω1 to A2 is thus
at least 0.1, and to A5 at least 0.7. Since A2 = Ω −
A5, the corresponding upper probability of transition
from ω1 to A2 is 1− 0.7 = 0.3.


Note that the case where |Ω| = 3 is somewhat spe-
cific, because every non-trivial subset is either atomic
or a complement of an atomic set. Therefore, lower
probabilities of the non-atomic sets can be obtained
from the upper probabilities corresponding to atomic
sets using L(A) = 1 − U(¬A). However, in gen-
eral, lower probabilities given for all non-trivial sub-
sets carry more information than probability intervals
on atomic sets alone. Another specific feature of the
case with |Ω| ≤ 3 is that the lower probability corre-
sponding to any F-field is 2-monotone.


2.3 Computing distributions at further steps


The main advantage of Markov chains is that knowing
the probability distribution at time n we can easily
compute the distribution at time n+1. This is done by
multiplying the given distribution with the transition
matrix.


In the case of MCIP, where initial distribution as well
as transition matrix are interval valued, we would
want the probability distribution at the next step to
be of a similar form. Thus, in an ideal case, the
next step probability distribution would be an interval
probability or even an F-field. But this is in general
not possible. According to MCIP model, the actual
distribution at each step is a classical probability dis-
tribution which is assumed to be a member of some
set of distributions forming a structure of an interval
probability. Similarly, the transition matrix is a clas-
sical transition matrix belonging to a set of matrices,
also given in terms of interval probabilities.







Let q(0) be an initial distribution, thus satisfying (5),
and p1 a transition probability, satisfying (7). Ac-
cording to the classical theory, the probability at the
next step is q(1) = q(0)p1. Thus, the corresponding set
of possible probability distributions at the next step
must contain all the probability distributions of this
form. Consequently, in the most general form, the
set of probability distributions corresponding to Xk


would be


Ck := {q(0)p1 . . . pk | q(0) ∈M(Q(0)),


pi ∈M(P ) for i = 1, . . . , k}. (10)


But these sets in general cannot be represented as
structures of interval probabilities. Thus, they can-
not be observed in terms of interval probabilities, or
even in terms of convex sets. However, a possible ap-
proach using interval probabilities is to calculate the
lower and the upper envelope of the set of probabilities
obtained at each step and do further calculations with
this interval probability and its structure. The result-
ing set of possible distributions at n-th step is then
in general larger than Ck, and could only be regarded
as an approximate to the true set of distributions. In
a similar way also more general convex envelopes of
sets Ck can be constructed.


Approximation with interval probabilities


Here we describe how to compute approximations of
the sets Cn with interval probabilities. We define a se-
quence (Q(n))n≥0 of F-fields, where Q(0) denotes the
initial interval probability distribution, such that the
structure M(n) of each member of the sequence con-
tains the set Cn.


For every n let Q(n+1) be the F-field generated by the
set of all products of the form q(n)pn+1 where q(n) be-
longs to the structure M(Q(n)) and pn+1 is a member
of M(P ). Such Q(n+1) is thus the narrowest F-field
whose structure contains all the products q(n)pn+1.
The products q(n)pn+1 would be the possible distri-
butions at time n + 1 if every q(n) ∈ M(Q(n)) was a
possible distribution at time n. Clearly, the inclusions
Cn ⊆ M(Q(n)) = M(n) hold, but the intervals are in
general wider than necessary to bound the sets Cn.
However, finding exact intervals is a computationally
difficult problem.


Let L(n) be the lower probability corresponding to
Q(n) and L(n+1) the one corresponding to Q(n+1).
Further, let q(n) be any member of the structure
M(Q(n)) and q(n+1) the corresponding distribution
at time n + 1. For every A ⊆ Ω we have


q(n+1)(A) =
∑


ωj∈A


m∑


i=1


q
(n)
i pn+1


ij


=
m∑


i=1


q
(n)
i


∑


ωj∈A


pn+1
ij


=
m∑


i=1


q
(n)
i pn+1


i (A)


≥
m∑


i=1


q
(n)
i Li(A). (11)


Since pn+1
i can be chosen independently of each other


and of q(n) and because Li have the F-property, they
can be chosen so that


pn+1
i (A) = Li(A) for every 1 ≤ i ≤ m.


Therefore, equality can be achieved in (11). Conse-
quently, we obtain:


L(n+1)(A) = inf
q(n)≥L(n)


m∑


i=1


q
(n)
i Li(A). (12)


The above infimum can be viewed as a lower expecta-
tion with respect to M(n) of the function XA(ωi) :=
Li(A).


If the lower probability L(n) is 2-monotone, (12) can
(because of finiteness) equivalently be expressed in
terms of Choquet integral (see e.g. [3])


L(n+1)(A) =
∫


Li(A) dL(n) =
∫


XA dL(n). (13)


The above expression is linear in L(n) and thus re-
quires significantly less computation to evaluate than
(12). But even if both L(n) and Li, for 1 ≤ i ≤ m,
are 2-monotone, the resulting lower probability L(n+1)


need not be 2-monotone. Therefore, the use of (13)
would in general produce less accurate results.


2.4 Invariant distributions


The invariant set of distributions


One of the main concepts in the theory of Markov
chains is the existence of an invariant distribution.
In the classical theory, an invariant distribution of a
Markov chain with transition probability matrix P is
any distribution q such that q P = q. In the case of
regular Markov chain an invariant distribution is also
the limiting distribution.


In MCIP model, a single transition probability ma-
trix as well as initial distributions are replaced by sets
of distributions given by structures of interval prob-
abilities. Consequently, an invariant distribution is
replaced by a set of distributions, which is invariant
for the interval transition probability matrix P . An







invariant set of distributions is thus a set C satisfying
the condition


C = {qp | q ∈ C, p ∈M(P )}. (14)


Thus, the invariant set of probabilities is closed for
multiplication with the set of possible transition ma-
trices. Of course, this does not mean that all its mem-
bers are invariant distributions corresponding to some
matrices from M(P ), but it will follow from the con-
struction that the largest such set must contain all
those invariant distributions.


Given an interval transition matrix P it is in principle
easy to find its largest invariant set of distributions.
We start with the set C0 of all probability distribu-
tions on (Ω, 2Ω) and construct the sequence of sets of
probability measures:


Ci+1 := {q p | q ∈ Ci, p ∈M(P )}, (15)


starting with C0. The above sequence corresponds to
sequence (10), where the initial set of distributions is
equal to the set of all probability distributions. In this
case the sequence is monotone and the limiting set of
distributions


C∞ :=
∞⋂


i=1


Ci. (16)


is the largest invariant set of distributions.


The set C∞ is non-empty because it obviously contains
all invariant distributions of the matrices in M(P ),
and in the finite case invariant distributions always ex-
ist, although are not necessarily unique. Even though
the invariant set of distributions is easy to find in prin-
ciple, its shape can be very complicated and therefore
approximations may be useful for practical purposes.


We have defined the invariant set of distributions as
the limiting set of the sequence (10) starting with the
set of all probability distributions. But this does not
say anything about limiting set if the initial set is dif-
ferent. In Section 3 we show that the limiting set is
unique and independent of the initial set C0 if a reg-
ularity condition is satisfied, which is the main result
of this paper.


Approximating invariant distributions with
interval probabilities


To approximate the invariant set of distributions with
interval probabilities we try to find the F-field Q =
(Ω, 2Ω, L) such that


L(A) = inf
q∈M


m∑


i=1


qiLi(A) (17)


or in terms of lower expectations


L(A) = EMXA


where XA(ωi) = Li(A). If the approximation with
Choquet integral is used instead, the conditions be-
come


L(A) =
∫


XA dL (18)


which is a system of linear equations with unknowns
L(A).


The minimal solution L of either of the sets of equa-
tions (17) or (18) approximates the largest invariant
set of distributions C∞ in the sense that all its mem-
bers dominate L, or in other words, the set C∞ is
contained in the structure of the interval probability
(Ω, 2Ω, L). This can be seen on the following way. Let
L(0) be the lower probability with L(A) = 0 for every
A ⊂ Ω and L(Ω) = 1. It can be shown that both se-
quences of lower probabilities obtained through (12)
and (13) starting with L(0) are monotone and there-
fore convergent. Clearly, their suprema are the min-
imal solutions of the equations (17) and (18) respec-
tively. The inclusions Cn ⊆ M(n) for every n ≥ 0
imply the required inclusion.


Example 2. We approximate the invariant set of dis-
tributions of the Markov chain with interval transition
probability matrix given by the lower bound (9). We
obtain the following solution to the system of equa-
tions (18):


L(∞) = (0.232, 0.2, 0.244, 0.581, 0.625, 0.6),


where L(∞) is of the form (8). The intervals corre-
sponding to the above solutions are then


P (∞) = ([0.232, 0.4], [0.2, 0.375], [0.244, 0.419],
[0.581, 0.756], [0.625, 0.8], [0.6, 0.768]).


The above lower bound is of course only an approxi-
mation (from below) of the true lower bound for the
invariant set of distributions. For comparison we in-
clude the lower bound of the set of invariant distribu-
tions corresponding to 100,000 randomly generated
matrices dominating PL:


(0.236, 0.223, 0.275, 0.587, 0.628, 0.608).


Since all invariant distributions of the members of the
structure M(P ) must belong to the set C∞, the above
lower bound is an approximation from above of the
true lower bound and yields the intervals:


([0.236, 0.392], [0.223, 0.372], [0.275, 0.413],
[0.587, 0.725], [0.628, 0.777], [0.608, 0.764]).


Thus, the lower bound of the true invariant set of
distributions lies somewhere between the two approx-
imations.







3 Convergence to equilibrium


3.1 Regular interval stochastic matrices


One of the main results of classical Markov chain the-
ory is that chains with irreducible and aperiodic tran-
sition matrices always converge to a unique invariant
distribution. Such transition matrices are sometimes
called regular. In short, a transition matrix is regular
if p


(n)
ij > 0 holds for all sufficiently large n, where p


(n)
ij


is the (i, j)-th entry of the matrix power Pn. Note
that if all entries of P r are strictly positive then also
P k, where k > r, has the same property. This follows
from the properties of matrix multiplication and the
fact that P has no zero rows. Therefore, a stochas-
tic matrix is regular if all entries of P r are strictly
positive for at least one integer r.


If λ is any initial distribution and (Xn)n≥0 is Markov
(λ, P ) with P regular then


P (Xn = j) → πj as n →∞ for all j,


where π is the unique invariant distribution.


Regularity can similarly be defined for the case of
Markov chains with interval probabilities. Let us first
define the n-th power of an interval stochastic matrix
P .
Definition 1. Let P be an interval stochastic ma-
trix. We will call the set Pn = {p1p2 . . . pn | pi ∈
M(P ) for i = 1, . . . , n} the n-th power of P .


Note that the n-th power of an interval stochastic
matrix is in general not an interval stochastic matrix,
but a more general set of stochastic matrices, which
are not easily tractable. Therefore, approximations in
terms of interval probabilities will be useful. We also
note that powers of interval stochastic matrices are
associative in the sense that PmPn = Pm+n, where
the product of sets of matrices on the left hand side
denotes the set of all products of matrices from cor-
responding sets.


Now we generalize the concept of regularity to interval
stochastic matrices.
Definition 2. An interval stochastic matrix P is reg-
ular if there exists n > 0 such that pij > 0 for every
p ∈ Pn.


Clearly, this condition of regularity implies that ev-
ery matrix in M(P ) is regular, but inverse does not
necessarily hold. In a similar way as in the classical
case, it can be seen that if all matrices from Pn have
strictly positive entries, then Pk, where k > n, has
the same property.


As we have pointed out before, powers of stochastic
matrices as defined here are not easily tractable, thus


checking regularity could be difficult in general. How-
ever, some simpler to check sufficient conditions easily
follow from approximations presented before.


First we define two pseudo-powers for stochastic ma-
trices that approximate powers from Definition 1.
Both pseudo-powers are based on two operations sim-
ilar to matrix multiplication, using approximations
(12) and (13).


Definition 3. Let P be an interval stochastic ma-
trix with lower probability matrix PL = [L1 . . . Lm]T .
Define Pn


L = [Ln
1 . . . Ln


m]T where L1
i = Li and Ln


i =
infq≥Ln−1


i


∑m
i=1 qjLj(A) for i = 1, . . . ,m and n ≥ 2.


Corollary 1. If P is an interval stochastic matrix
with lower probability matrix PL such that Pn


L =
[Ln


1 . . . Ln
m]T and Ln


i (A) > 0 for every i = 1, . . . , m
and A ⊆ Ω, A 6= ∅ then P is regular.


Definition 4. Let P be an interval stochastic ma-
trix with lower probability matrix PL = [L1 . . . Lm]T .
Define Pn


L = [Ln
1 . . . Ln


m]T where L1
i = Li and Ln


i =∫
Lj(A)dLn−1


i for i = 1, . . . , m and n ≥ 2, and the
integral used is Choquet integral (as in (13)) .


Corollary 2. If P is an interval stochastic matrix
with lower probability matrix PL such that Pn


L =
[Ln


1 . . . Ln
m]T and Ln


i (A) > 0 for every i = 1, . . . , m
and A ⊆ Ω, A 6= ∅ then P is regular.


The above corollaries present sufficient conditions for
regularity because each power Pn as a set of stochas-
tic matrices is contained within the structure of the
corresponding pseudo-power, which is representable
in terms of interval probabilities. Since powers from
Definition 1 have no such representation, the suffi-
cient conditions should be easier to check for pseudo-
powers. Clearly, the sufficient condition in Corollary 2
implies the one in Corollary 1, but is much easier to
check.


Even though the operations used in Definitions 3 and
4 resemble matrix multiplication, such a multiplica-
tion has an important weakness that it is not asso-
ciative. But associativity is crucial in most methods
concerning Markov chains and there is no obvious way
to define an associative matrix multiplication for in-
terval stochastic matrices, which is one of the main
problems of the model.


3.2 Convergence to equilibrium


The main result of this section states that there is
a unique compact set corresponding to a MCIP with
a regular interval transition matrix to which its sets
of distributions converge. To prove the theorem we
use Banach fixed point theorem on the multivalued
mapping between compact sets of probabilities corre-
sponding to the transition matrix in Hausdorff metric.







Let (M, d) be a metric space. A mapping T : M → M
is a contraction if there exists a constant 0 ≤ k <
1 such that d(Tx, Ty) ≤ k d(x, y) for all x, y ∈ M .
If k = 1 is allowed in the above condition then the
mapping T is said to be non-expansive.


An element x ∈ M is a fixed point of an operator T if
T (x) = x.
Theorem 1 (Banach fixed point theorem). Let
(M, d) be a non-empty complete metric space and
T : M → M a contraction. Then there exists a unique
fixed point x ∈ M of T . Furthermore, this fixed point
is the limit of the sequence {xn}n∈N where xi+1 = Txi


and x0 is an arbitrary element of M .


Given a metric space M and non-empty compact sub-
sets X, Y ⊂ M , Hausdorff distance is defined as


dH(X,Y ) =


max
{


sup
x∈X


inf
y∈Y


d(x, y), sup
y∈Y


inf
x∈X


d(x, y)
}


.


This distance makes the set of non-empty compact
sets a metric space F (M). Moreover, if M is a com-
pact space, so is F (M) (see e.g. [1], p. 87). Note also
that every compact metric space is complete.


To justify the use of Hausdorff metric, we show that
all sets used are indeed compact. As the set of all
probability distributions on a finite space is com-
pact, we only have to note that the sets are closed.
We start with a set of probabilities forming struc-
ture of an interval probability Q with lower prob-
ability L. Such a set is of the form M(Q) =
{q | q is a probability measure on (Ω, 2Ω), q ≥ L} and
thus clearly closed and consequently compact. To see
that M(P ) is compact too, note that in topological
sense it is a direct product of m structures correspond-
ing to each row of P .


All sets of distributions corresponding to further steps
are of the form CP = {qp | q ∈ C, p ∈ M(P )}. Those
sets are images of the compact sets C ×M(P ) with
the continuous mapping (q, p) 7→ qp, and are therefore
compact too.
Proposition 1. Let p be a stochastic matrix. Then
the mapping from the set of all probability distribu-
tions q 7→ qp is non-expansive in the metric


d(q, q′) = max
A⊆Ω


|q(A)− q′(A)|


=
1
2


∑


ω∈Ω


|q(ω)− q′(ω)|.


Moreover, if pij > 0 for every 1 ≤ i, j ≤ m and
k = 1 − inf1≤i,j≤m pij then the mapping q 7→ qp is
a contraction and


d(qp, q′p) ≤ k d(q, q′).


Proof. Take arbitrary A ⊆ Ω and let pi(A) =∑
ωj∈A pij . Further let q and q′ be probability dis-


tributions on Ω with q 6= q′, and denote B = {ω ∈
Ω | q(ω) ≥ q′(ω)} ( Ω. Clearly, k = supA(Ω pi(A)
where 1 ≤ i ≤ m.


We have


|qp(A)− q′p(A)|


=


∣∣∣∣∣
m∑


i=1


qipi(A)−
m∑


i=1


q′ipi(A)


∣∣∣∣∣


=


∣∣∣∣∣
m∑


i=1


pi(A)(qi − q′i)


∣∣∣∣∣


=


∣∣∣∣∣
∑


ωi∈B


pi(A)|qi − q′i|


−
∑


ωi 6∈B


pi(A)|qi − q′i|
∣∣∣∣∣


≤ max


{ ∑


ωi∈B


pi(A)|qi − q′i|,


∑


ωi 6∈B


pi(A)|qi − q′i|
}


≤ max







∑


ωi∈B


k|qi − q′i|,
∑


ωi 6∈B


k|qi − q′i|





= k max







∑


ωi∈B


|qi − q′i|,
∑


ωi 6∈B


|qi − q′i|





≤ k d(q, q′)


Since k ≤ 1, the mapping is non-expansive. Further-
more, if pij > 0 for every 1 ≤ i, j ≤ m then k < 1 and
thus the mapping is a contraction.


The next proposition shows that the mapping C 7→
CPn is a contraction if P is a regular interval stochas-
tic matrix and n is large enough.


Proposition 2. Let P be a regular interval stochas-
tic matrix and n > 0 an integer such that pij >
0 for every p ∈ Pn where 1 ≤ i, j ≤ m. Let
k = 1 − inf


1≤i,j≤m
p∈Pn


pij. The mapping C 7→ CPn =


{qp1 . . . pn | q ∈ C, pi ∈ M(P ) for i = 1, . . . , n} is
then a contraction and


dH(CPn, C′Pn) ≤ k dH(C, C′).


Proof. By the assumption, pij > 0 for every p ∈ Pn







and 1 ≤ i, j ≤ m. We have


dH(CPn, C′Pn) =


max


{
sup
q∈C


p∈Pn


inf
q′∈C′
p′∈Pn


d(qp, q′p′),


sup
q′∈C′
p′∈Pn


inf
q∈C


p∈Pn


d(qp, q′p′)


}
.


Take for instance


sup
q∈C


p∈Pn


inf
q′∈C′
p′∈Pn


d(qp, q′p′)


≤ sup
p∈Pn


sup
q∈C


inf
q′∈C′


d(qp, q′p)


≤ sup
q∈C


inf
q′∈C′


k d(q, q′)


≤ k dH(C, C′),
where the second inequality follows from Proposi-
tion 1. Finally, this clearly implies dH(CPn, C′Pn) ≤
k dH(C, C′).


Finally we prove the main convergence theorem.


Theorem 2. Let P be a regular interval stochastic
matrix and C a compact set of probability distributions
on (Ω, 2Ω) where Ω is a finite set. Then the sequence
{CPn}n∈N converges in Hausdorff metric to a unique
compact invariant set C∞ that only depends on P and
coincides with (16).


Proof. Let n > 0 be an integer such that every p ∈ Pn


satisfies pij > 0 for every 1 ≤ i, j,≤ m. By Propo-
sition 2, the mapping C 7→ CPn is a contraction,
and so, by Banach fixed point theorem, the sequence
{C(Pn)k}k∈N converges to C∞.


To see that the sequence {CPk}k∈N converges to the
same set C∞, we use associativity of powers of P .
Thus, we have CPk = CPr(Pn)s, where r < n and
s goes to infinity as k goes to infinity. Since CPr is a
compact set, the sequence converges to C∞.


3.3 Convergence of approximations


The limiting set of probabilities is computationally
very difficult to find directly; therefore, approxima-
tions would be very useful in practice. Now we show
that also a family of approximations converges inde-
pendently from the initial distribution.


Proposition 3. Let PL = [L1 . . . Lm]T be a lower
transition probability matrix such that Li(A) < 1 for
every 1 ≤ i ≤ m and A ( Ω. Let the mapping


L 7→ LPL = L∗


be given, where L∗ is the lower probability such that
L∗(A) =


∫
Li(A) dL. This mapping is then a contrac-


tion in the maximum distance metric


d(L,L′) = max
A⊆Ω


|L(A)− L′(A)|.


Further, if k = sup
1≤i≤m


A(Ω


Li(A) then


d(LPL, L′PL) ≤ k d(L,L′).


Proof. Take an arbitrary set A ( Ω. We have:


|LPL(A)− L′PL(A)|


=
∣∣∣∣
∫


Li(A) dL−
∫


Li(A) dL′
∣∣∣∣ .


Let π be a permutation such that Lπ(i)(A) ≥
Lπ(i+1)(A) for every 1 ≤ i ≤ m and denote Si =
{π(1), . . . , π(i)} and xi = Lπ(i)(A) where xm+1 = 0.
The above Choquet integrals can then be transformed
into (see [3])


∣∣∣∣
∫


Li(A) dL−
∫


Li(A) dL′
∣∣∣∣


=


∣∣∣∣∣
m∑


i=1


(xi − xi+1)L(Si)


−
m∑


i=1


(xi − xi+1)L′(Si)


∣∣∣∣∣


=


∣∣∣∣∣
m∑


i=1


(xi − xi+1)(L(Si)− L′(Si))


∣∣∣∣∣


≤
m∑


i=1


(xi − xi+1)d(L,L′)


=x1 d(L,L′)
≤k d(L, L′).


Thus, d(LPL, L′PL) = max
A⊆Ω


|LPL(A) − L′PL(A)| ≤
k d(L,L′), which completes the proof.


In previous sections we approximated sets of distri-
butions corresponding to consecutive steps by lower
probabilities L(n) where L(0) = L is the initial lower
probability and L(n)(A) =


∫
Li(A) dL(n−1). A prob-


lem with this approximation is its non-associativity,
but associativity was crucial in the proof of Theo-
rem 2.


Because of this inconvenience we can only prove a
convergence theorem for a slightly different approxi-
mation. The construction easily implies that for ev-
ery n > 0 the pseudo-power Pn


L approximates the
n-th power of P in the sense that every p ∈ Pn







satisfies p ≥ Pn
L. Therefore, the sequence of lower


probabilities {L(kn)}k∈N defined by L(0) = L and
L(kn) = L((k−1)n)Pn


L, where L is the initial lower
probability, approximates the sets of distributions at
kn-th steps in the sense that p ≥ L(kn) for every
p ∈ Ckn.


Now we give a convergence theorem for those approx-
imations.


Theorem 3. Let P be an interval stochastic matrix
with the lower bound PL such that Pn


L = [Ln
1 . . . Ln


m]T


satisfies Ln
i (A) < 1 for every 1 ≤ i ≤ m and A (


Ω. Further let L be any lower probability on (Ω, 2Ω).
Then the sequence {L(kn)}k∈N converges to a unique
lower probability L(∞) that only depends on Pn


L.


Proof. By Proposition 3 the mapping L 7→ LPn
L is


a contraction in the maximum distance metric. By
Banach fixed point theorem the sequence {L(kn)}k∈N
converges to a unique lower probability L(∞) which is
the fixed point for the mapping L 7→ LPn


L.


4 Conclusion


Results in the paper show that even if the assump-
tions of Markov chain model are substantially relaxed,
the behaviour remains similar as in the most widely
used model with constant precisely known initial and
transition probabilities. However, several interesting
questions still remain open. Especially those related
to approximations of the intractable true sets of dis-
tributions with convex sets representable with interval
probabilities.
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