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Abstract

The Logical concept of probability, introduced to
ISIPTA 2005 in a tutorial ([15]), is based on the
theory of Interval probability. Since the main fea-
ture of the Logical concept is given by the evaluation
of arguments consisting of premises and conclusions,
it proves necessary to define exactly which kinds of
propositions can be employed hereby. If this is done,
the analysis allows the definition of independent argu-
ments by examination of the contents of premises and
conclusions. If Interval probability is attributed to ar-
guments according to the relevant axioms, a frequency
interpretation becomes feasible which decisively relies
on the autonomous concept of independence.

Keywords. Interval probability, evaluation of argu-
ments, concept of independence, frequency interpre-
tation, Symmetric theory of probability.

1 Introduction

The motivation to develop the Logical concept of
probability and the main features of this concept are
thoroughly described in [15]. While in this paper the
emphasis was laid on the merits of this concept and
of the Symmetric theory of probability which is based
on this concept, the present article concentrates on
the understanding of the elements which constitute
the Logical concept.

Since by the Logical concept probability exclusively
is attributed to arguments, the question must be an-
swered, which kind of arguments are suitable for such
an evaluation: It is easy to find counter-examples. In
Section 2 the concept of P-argument is introduced,
meant to cover all situations of interest in statis-
tical analysis and reasoning. This approach allows
the definition of mutually independent P-arguments,
based on the contents of the respective premises and
conclusions. Irrelevance of one proposition with re-
spect to another one and mutual independence of P-

arguments constitute the most important aspects of
this approach — prior to any kind of evaluating the
arguments.

The axioms governing the introduction of interval
probability via the establishment of W-fields must be
based on this conceptual foundation: Axioms L III
and L IV produce the result that mutual indepen-
dence has the effect of multiplicativity — but not vice
versa1 (Section 3).

A generalization of the classical Binomial law pro-
duces a Weak law of large numbers based on mutual
independence of arguments. Its result is described by
a proposed new expression: weak invergence (Section
4).

The frequency interpretation of the Logical concept
which arises out of these results (Section 5) is not
liable to objections of circular reasoning. It is seen
as the basis of understanding the statements of the
Logical concept and of the Symmetric theory of prob-
ability.

Section 6 contains a few historical remarks and a com-
parison of some different approaches to the combined
aspects of probability and independence. It also out-
lines the importance of these results with respect to
the Symmetric theory.

2 P-Arguments

Let A and B be propositions describing contingent
facts, which may be right or wrong. The propositions
A and B are therefore neither tautologies nor anti-
nomies. Only propositions of this kind will be con-
sidered in this article. Concerning the ordered pairs
(A, B) the question arises what kind of consequences
can be drawn from B concerning A.

1The paper of ISIPTA’05 does not cover the aspects de-
scribed in Section 2 of the present article. As a consequence
the axioms of W-fields in 2005 are partially different from that
in Section 3 of the present article.



Four categories of such pairs (A, B) may be distin-
guished. They are characterized by:

K(A, B) = +1,

K(A, B) = −1,

K(A, B) = 0,

K(A, B) = P.

Note that here +1, −1, 0, P are mere symbols and
don’t represent numbers!

Definition 1 K(A, B) = +1 is meant to describe
pairs (A, B), where A can be derived logically from
B. �

Definition 2 K(A, B) = −1 describes pairs (A, B)
where ¬A logically can be derived from B. �

Definition 3 K(A, B) = 0 distinguishes such pairs
(A, B), where absolutely no consequences about A can
be drawn from B, in particular that for all potential
premises B1 (where B ∧ B1 is not an antinomy)

K(A, B1) = K(A, B ∧ B1)

holds and for all potential conclusions A1 (provided
that A ∨ A1 is not a tautology)

K(A1, B) = K(A ∨ A1, B)

holds: B is irrelevant with respect to A. �

Corollary 1 With respect to the meaning of “irrele-
vance” it can be concluded that the following implica-
tions hold:

K(A, B) = 0 ⇒ K(¬A, B) = 0;

K(A, B1) = 0, K(A, B2) = 0

⇒ K(A, B1 ∨ B2) = 0, K(A, B1 ∧ B2) = 0;

K(A1, B) = 0, K(A2, B) = 0

⇒ K(A1 ∨ A2, B) = 0, K(A1 ∧ A2, B) = 0. �

The attachment K(A, B) = 0 is determined by the
contents of A and of B, and its meaning is generally
unquestioned. It is, however, possible that persons
with different background disagree with respect to the
eventuality of consequences which the facts described
by the proposition B can have for the facts described
by the proposition A.

It may be expected that a parapsychologist or
a supporter of Chaos-theory refuse attachments
K(A, B) = 0, which are selfunderstanding for other
scientists. Concerning characteristic types of (A, B)

with religious background there will be an influence
of creed.

On the other hand distinction of pairs (A, B) with
K(A, B) = 0 constitutes fundamental prerequisites
in most scientific disciplines as far as empirical re-
search is concerned. Consequently these attachments
are inevitable tools of statistical modeling.

Historically the idea that the circumstances of one
game of chance must have no consequence whatever
for the following games, was prior and fundamental
to the idea of introducing probability in analyzing the
results of games of chance.

Definition 4 All ordered pairs (A, B) in considera-
tion which do not belong to the categories +1, −1 or
0, are attached to category P . A pair (A, B) belong-
ing to this category is named a partial argument or
P-argument (A||B). B is named the premise, A is
named the conclusion of the P-argument (A||B). �

It must be agreed that generally P-arguments are
the most important tools of learning and therefore
are the means of evidential reasoning. The class of
P-arguments is huge and extremely heterogeneous.

For clearness it must be pointed out that the category
of P-arguments contains pairs (A, B), which at first
sight could be expected to belong to category 0:

A pair of propositions (A, B) where B = R ∨ M and
K(A, R) = +1, K(A, M) = −1 does not qualify for
K(A, B) = 0 since it violates a criterion of this cate-
gory. This aspect may be demonstrated by

Example 1 Let

A = “It is freezing”,
R1 = “The temperature is −3◦C”,
M1 = “The temperature is +2◦C”

and B1 = R1 ∨ M1. Obviously K(A, B1) ∈ {0, P}.
Now let

R2 = “The temperature is −1◦C”,
M2 = “The temperature is between

0◦C and +3◦C”.

B2 = R2 ∨ M2 produces K(A, B2) ∈ {0, P}.

B1 ∧ B2 = (R1 ∨ M1) ∧ (R2 ∨ M2) =

M1 =“The temperature is +2◦C”.

Therefore: K(A, B1 ∧ B2) = −1. Comparison
with Definition 3 reveals that K(A, B1) = 0 as
well as K(A, B2) = 0 would be in contradiction
with the requirements of this definition. Accordingly
K(A, B1) = P and K(A, B2) = P must hold true
and: (A||B1) as well as (A||B2) are P-arguments. �



This example points at the possibility of pairs (A, B),
where B is not informative directly with respect to A,
but nevertheless (A, B) does not belong to category 0,
because B contains information which can be relevant
with respect to A, if combined with some complemen-
tary information.

On the other hand it reveals the existence of
P-arguments where the premises are not informative
with respect to the conclusions — as long as both of
them stand alone.

This possibility contrasts sharply to another type of
P-arguments describing reliable empirical knowledge
which may be classified as “practically sure”.

Altogether the kinds of treatment with P-arguments
are very different in different fields of application: in
daily life, in court, in science or in humanities. It
is, however, possible to define generally a relation be-
tween P-arguments which is of special importance for
establishing concepts to evaluate P-arguments.

Definition 5 The P-arguments (A1||B1) and
(A2||B2) are independent of each other, iff
K(A1, B2) = 0 and K(A2, B1) = 0. �

Mutual independence of P-arguments is distin-
guished, therefore, solely by the reciprocal irrelevance
of premises with respect to the conclusion of the other
P-argument. This definition is prior to all attempts to
introduce the concept of probability and in the con-
text it is seen as a prerequisite for establishing a suit-
able theory.

Generalizations of Definition 5 seemingly can be es-
tablished in two different ways.

Definition 6 Let (Ai||Bi), i = 1, ..., r, be
P-arguments. Iff

K(Ai, Bj) = 0, ∀ i, j ∈ {1, ..., r}, i 6= j,

holds, the P-arguments (A1||B1), ..., (Ar||Br) are
pairwise independent. �

Definition 7 Iff, under the assumptions of Defini-
tion 6,

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0,

∀∅ $ I1, I2 $ {1, ..., r}, I1 ∩ I2 = ∅,

holds, the P-arguments (A1||B1), ..., (Ar||Br) are to-
tally independent from each other. �

Obviously P-arguments which are totally independent
from each other are pairwise independent, too. But
additionally the following Lemma holds:

Lemma 1 If (Ai||Bi), i = 1, ..., r, are pairwise in-
dependent P-arguments, then they are totally indepen-
dent from each other. �

The proof of this Lemma is based on Corollary 1 by
induction on r. Obviously Definition 6 and 7 coincide
for r = 2. It is now presupposed that the assertion of
Lemma 1 holds for r ≥ 2.

Therefore, if (Ai||Bi), i = 1, ..., r + 1, are taken as
pairwise independent, for every I0 ⊆ {1, ..., r + 1}
with |I0| ≤ r, the relation

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0,

∀∅ $ I1, I2, I1 ∪ I2 ⊆ I0, I1 ∩ I2 = ∅,

must be valid.

Now let ∅ $ I1, I2 $ {1, ..., r + 1} and I1 ∩ I2 = ∅.
If there exists I0 ⊆ {1, ..., r + 1}, |I0| ≤ r, and
I1 ∪ I2 ⊆ I0, according to the assumption

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 = 0

must hold.

If, however, I1 ∪ I2 = {1, ..., r + 1}, no such I0 exists.
Now two cases have to be distinguished:

a) If |I1| < r, |I2| ≥ 2, let

I2 = I ′2 ∪ I ′′2 , ∅ $ I ′2, I ′′2 , I ′2 ∩ I ′′2 = ∅.

Therefore |I1 ∪ I ′2| ≤ r, |I1 ∪ I ′′2 | ≤ r.

Due to the assumption

K





∧

i∈I1

Ai,
∧

j∈I′
2

Bj



 = K





∧

i∈I1

Ai,
∧

j∈I′′
2

Bj



 = 0,

and Corollary 1 produces

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 =

= K





∧

i∈I1

Ai,
∧

j∈I′
2

Bj ∧
∧

j∈I′′
2

Bj



 = 0.

b) If |I1| = r, |I2| = 1, let

I1 = I ′1 ∪ I ′′1 , ∅ $ I ′1, I ′′1 , I ′1 ∩ I ′′1 = ∅.

|I ′1 ∪ I2| ≤ r, |I ′′1 ∪ I2| ≤ r,

K





∧

i∈I′
1

Ai,
∧

j∈I2

Bj



 = K





∧

i∈I′′
1

Ai,
∧

j∈I2

Bj



 = 0,



and due to Corollary 1:

K





∧

i∈I1

Ai,
∧

j∈I2

Bj



 =

= K





∧

i∈I′
1

Ai ∧
∧

i∈I′′
1

Ai,
∧

j∈I2

Bj



 = 0.

In both cases the conditions for total independence of
(Ai||Bi), i = 1, ..., r, are satisfied. �

Consequently in the following only the concept of r
mutual independent P-arguments has to be taken into
consideration.

This result characterizes the difference between the
concept of independence in the theory employed here
and in the Classical theory: Independence is a more
demanding relation in the theory of the Logical con-
cept.

3 W-Fields

The most advanced method of evaluating
P-arguments is that of attaching interval-probability.
It affords the selection of two sets of propositions:
AP , BP with AP ∩ BP = ∅, so that

K(A, B) ∈ {0, P}, ∀A ∈ AP , B ∈ BP .

AP as well as BP , in the second step, have to be
completed, if necessary, to generate sets A∗

P and B∗
P ,

which are closed under the logical operations ∨, ∧,
and \ (“logical difference”). Additional potential con-
clusions A and additional potential premises B may
produce additional P-arguments, but ordered pairs
(A, B) of category +1, −1 or 0 as well. It must be
secured that all assignments are in concordance with
the definitions of K(A, B).

According to the tradition and the actual practice
of probability theory conclusions as well as premises
should be described by sets. Therefore the elements
of A∗

P and B∗
P must be represented by sets in a way

guaranteeing that logical operations on A∗
P and on B∗

P

are transformed to the corresponding set operations
on the representing sets A and B with A ∩ B = ∅.

Obviously this representation is by no means uniquely
determined. It always must be borne in mind that the
tools of representation must not influence the decisive
probabilistic reasoning.

Then any assignment of interval-probability is pro-
duced by

P (A||B) = [L(A||B), U(A||B)], ∀A ∈ A, B ∈ B.

It may be understood as the result of evaluating
P-arguments completed by the following attachments:

L(A||B) = 1, U(A||B) = 1, if for the corresponding
propositions K(A, B) = 1 holds;

L(A||B) = 0, U(A||B) = 0, if K(A, B) = −1 holds;

L(A||B) = 0, U(A||B) = 1, if K(A, B) = 0 holds.

The probability of any P-argument (A||B) determines
the interval-limits L(A||B) and U(A||B) for the rep-
resenting sets A and B. The rules governing this as-
sessment are given in a three-level hierarchy:

1) Classical theory of probability:

Any function p(.) on a measure space (Ω; A)
which obeys Kolmogorov’s three axioms is called
a K-function.

2) Theory of interval probability (see [14]):

An F-(probability-)field F = (Ω; A; L(.)) is
given, iff the following three axioms hold2:

T IV: P (A) = [L(A); U(A)] ⊆ [0; 1], ∀A ∈ A.

T V: The set M of K-functions p(.) on (Ω; A)
with L(A) ≤ p(A) ≤ U(A), ∀A ∈ A, is not
empty.

T VI: infp(.)∈M p(A) = L(A),

supp(.)∈M p(A) = U(A), ∀A ∈ A.

3) Logical concept of probability:

Let (ΩA; A) and (ΩB ; B), ΩA ∩ ΩB = ∅, be
two measure spaces, where {x} ∈ A, ∀x ∈ ΩA,
{y} ∈ B, ∀ y ∈ ΩB .

A W-field W = (ΩA; A; ΩB ; B; L(.||.)) is given,
iff the following four axioms hold:

L I: To each B ∈ B+ := B \ {∅} an F-field
F(B) = (ΩA; A; L(.||B)) is attached.

L II: Let I 6= ∅ be an index set, B0 ∈ B+,
Bi ∈ B+, i ∈ I, and

B0 =
⋃

i∈I

Bi.

Then3:

F(B0) =
⋃

i∈I

F(Bi).

2According to Axioms T IV–T VI the function U(.) is con-
jugate to L(.): U(A) = 1 − L(¬A), ∀A ∈ A.

3The union F = ∪i∈IFi = (ΩA; A; L(.)) of F-fields Fi =
(ΩA; A; Li(.)), i ∈ I, is defined by L(.) := infi∈I Li(.). Hence
U(.) = supi∈I Ui(.), and F is an F-field too. The employ-
ment of this procedure in assigning probability of arguments
characterizes the Logical concept in contrast to the Bayesian
approach.



L III: Let A ∈ A, B1 ∈ B+ irrelevant for A.
Then:

L(A||B1 ∩ B2) = L(A||B2), ∀B2 ∈ B+.

L IV: Let Ai ∈ A+, Bi ∈ B+, i = 1, 2, (A1||B1)
and (A2||B2) independent from each other.
Then:

L(A1 ∩ A2||B1 ∩ B2) =

= L(A1||B1 ∩ B2) · L(A2||B1 ∩ B2)

U(A1 ∩ A2||B1 ∩ B2) =

= U(A1||B1 ∩ B2) · U(A2||B1 ∩ B2).

The Logical concept of probability defined by Axioms
L I–L IV as a general principle employs probability as
a two-place-function: P (A||B) is to be interpreted as
probability of the argument with premise B and with
conclusion A and never must be mistaken as condi-
tional probability. According to this concept P (A)
and P (B) do not exist and therefore P (A|B) never
exists either. (On the other hand P ((A1|A2)||B) is
a valuable information in many situations.) Axiom
L II characterizes the distinction of the Logical con-
cept and any kind of Bayesian concept.

The fact that ΩA ∩ ΩB = ∅ and therefore A and B
always are disjoint, demonstrates the basic distinc-
tion between W-fields and Popper-spaces (cf. [12] and
[11]). This does not prevent the idea of combining
both aspects — but the success of such a program
cannot be foreseen.

On the other hand there is no relationship of the Log-
ical concept with approaches of Default reasoning (cf.
[7] and [10]) or of Plausibility measures and Possi-
bility measures. The Logical Concept does not ex-
tend the field of application beyond that of classical
probability: Its main goal is to improve the method-
ology of statistical reasoning by introducing duality
between appropriate W-fields and hereby allowing the
employment of probability to describe results of sta-
tistical inference. With respect to the intention there
is a relationship to approaches by R.A. Fisher ([5]),
D.A.S. Fraser ([6]), A. Dempster ([4]), A. Birnbaum
([2]), and I. Hacking ([8]), but there exist fundamental
differences in methodology4.

A survey of the resulting Symmetric theory of prob-
ability was given in the ISIPTA 05 paper, a short
survey of duality in statistical inference can be found
in a report for the 56th Session of ISI in Lisboa, 2007
([16]).

4A review of these approaches is given by T. Seidenfeld
([13]).

4 Independence and Multiplicativity

Axioms L I–L IV allow to establish a corpus of defi-
nitions and statements constituting the theory of the
Logical concept of probability. With one important
exception the theory of the classical concept can be
regarded as a special case of this theory. The dif-
ference between the two approaches with respect to
the concept of independence is characterized by the
results of this section.

Corollary 2 From Axiom L III and Corollary 1 it
follows that under the conditions for L III:

U(A||B1 ∩ B2) = U(A||B2), ∀B2 ∈ B+,

holds. �

From Axioms L III and L IV together with Corollary
2, it may be concluded:

Corollary 3 If (A1||B1) and (A2||B2) are mutually
independent,

L(A1 ∩ A2||B1 ∩ B2) = L(A1||B1) · L(A2||B2)

U(A1 ∩ A2||B1 ∩ B2) = U(A1||B1) · U(A2||B2)

hold. �

This result says that, according to the Logical Con-
cept, mutual independence of P-arguments produces
total multiplicativity of probabilities. However, on
the other hand, it is not possible in this theory to
infer mutual independence of P-arguments from mul-
tiplicativity of probabilities. This is a decisive dif-
ference to the objectivistic view of classical theory,
where independence of events is defined by means of
multiplicativity of probabilities. It should be empha-
sized that mutual independence of P-arguments can
only be understood as the fact that each premise is
irrelevant to the conclusion of the other P-argument.

Now let (Ai||Bi) with P (Ai||Bi) = [L; U ],
i = 1, 2, ..., be a potentially infinite series of mutu-
ally independent P-arguments and r ∈ IN.

Due to independence, the probability for the com-
bined P-argument ( ~A|| ~B) with ~A = A∗

1×...×A∗
r where

A∗
i ∈ {Ai, ¬Ai}, ~B = B1 × ... × Br is multiplicative:

P [r]( ~A|| ~B) =

[

r
∏

i=1

L(A∗
i ||Bi);

r
∏

i=1

U(A∗
i ||Bi)

]

.

Let I ⊆ {1, ..., r}, A∗
i = Ai, ∀ i ∈ I, A∗

i = ¬Ai,

∀ i /∈ I. Then I describes the conclusion ~A =: ~A(I)
uniquely. Because of

P [r](A∗
i ||Bi) = [L; U ], ∀ i ∈ I,

P [r](A∗
i ||Bi) = [1 − U ; 1 − L], ∀ i /∈ I,



one arrives at

P [r](I|| ~B) := P ( ~A(I)|| ~B)

=
[

L|I| ·(1 − U)r−|I|; U |I| ·(1 − L)r−|I|
]

.

Let ρ := |I|. In order to calculate the probability of
an argument with a conclusion of very few ¬Ai and
almost all Ai,

P [r](ρ ≥ ρ0|| ~B) =

=



 inf
L≤pi≤U

i∈{1, ..., r}

∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi);

sup
L≤pi≤U

i∈{1, ..., r}

∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi)





has to be calculated. Due to the monotonicity of the
function

p[r](ρ ≥ ρ0|| ~B) =
∑

|I|≥ρ0

∏

i∈I

pi

∏

i∈{1, ..., r}\I

(1 − pi)

in each of the pi ∈ [L; U ], i = 1, ..., r,

P [r](ρ ≥ ρ0|| ~B) =

=





∑

ρ≥ρ0

(

r

ρ

)

Lρ(1 − L)r−ρ;
∑

ρ≥ρ0

(

r

ρ

)

Uρ(1 − U)r−ρ





holds.

On the other hand:

P [r](ρ ≤ ρ0|| ~B) =

=





∑

ρ≤ρ0

(

r

ρ

)

Uρ(1 − U)r−ρ;
∑

ρ≤ρ0

(

r

ρ

)

Lρ(1 − L)r−ρ



 .

Therefore the probabilities of arguments with conclu-
sions of extremely many or extremely few factors Ai

can be calculated employing classical Binomial law
and Tschebysheff’s inequality:

Let

ρ0 = rU + rδ : U [r](ρ ≥ ρ0|| ~B) ≤
U(1 − U)

rδ2
,

let

ρ∗0 = rL − rδ : U [r](ρ ≤ ρ∗0|| ~B) ≤
L(1 − L)

rδ2
.

As a consequence:

L[r]
(

L−δ <
ρ

r
< U+δ

)

≥1 −
L(1 − L) + U(1 − U)

rδ2

and

L[r](L − δ <
ρ

r
< U + δ) ≥ 1 − ε,

if r ≥
L(1 − L) + U(1 − U)

εδ2
.

(1)

This result can be interpreted by means of appropriate
concepts of converging sequences of W-fields:

Definition 8 Let W [r] = (ΩA; A; Ω
[r]
B ; B[r]; L[r](.||.)),

r ∈ IN, be a sequence of W-fields and Z ∈ A be a

non-empty conclusion. If for ~B
[r]
0 = B

[1]
0 × ... × B

[r]
0 ,

r ∈ IN, and for every Z∗ ∈ A with Z∗ % Z there
exists a function N(Z∗, ε) ∈ IN, so that

L[r](Z∗||B
[r]
0 ) ≥ 1 − ε, ∀ r ≥ N(Z∗, ε), (2)

then with respect to the arguments (Z|| ~B
[r]
0 ),

r ∈ IN, the sequence W [r] is named stochasti-

cally convergent to a sequence W
[r]

of W-fields,

W
[r]

= (ΩA; A; Ω
[r]
B ; B[r]; L

[r]
(.||.)), r ∈ IN, with

P
[r]

(Z||B
[r]
0 ) = [1; 1] =: [1]. �

According to Definition 8 the result (1) can be utilized
to formulate

Corollary 4 Let the sequence of P-arguments

(A
(i)
0 ||B

(i)
0 ), i ∈ IN, with P (i)(A

(i)
0 ||B

(i)
0 ) = [L; U ] be

mutually independent. For r ∈ IN let

~B
[r]
0 = B

(1)
0 × ... × B

(r)
0 ,

t =
ρ

r
, ρ ∈ {0, ..., r},

A
[r]
0 (t) :=

⋃

I⊆{0, ..., r}
|I|=r·t





⋂

i∈I

A
(i)
0 ∩

⋂

i∈{0, ..., r}\I

¬A
(i)
0



 .

Let W [r] = (Ω
[r]
A ; A[r]; Ω

[r]
B ; B[r]; L[r](.||.)), r ∈ IN,

be W-fields containing the probability of arguments

with premise ~B
[r]
0 and conclusions of the kind

A
[r]
0 (J) =

⋃

r·t∈J A
[r]
0 (t), J ⊆ {0, ..., r}, so that

Ω
[r]
A = {0, 1

r
, 2

r
, ..., 1},

A[r] = Pot(Ω
[r]
A ),

~B
[r]
0 ∈ B[r].

The sequence W [r], r ∈ IN, is then with respect to the

arguments (A
[r]
0 (t)|| ~B

[r]
0 ) stochastically convergent to

the sequence W
[r]

, r ∈ IN, of W-fields

W
[r]

= (Ω
[r]

A ; A
[r]

; Ω
[r]
B ; B[r]; L

[r]
(.||.))



with

Ω
[r]

A = [0; 1],

A
[r]

= Bor(Ω
[r]

A ),

L
[r]

(A|| ~B
[r]
0 ) =











[1], A ⊇ [L; U ]

[0], A ∩ [L; U ] = ∅

[0; 1], else. �

Corollary 4 is the obvious consequence of (1) if ap-
plied to a sequence of mutually independent argu-
ments with probability [L; U ].

Introducing abbreviations, the result (1) may be ex-
pressed by the statement

lim
r→∞

P [r](L ≤ tr ≤ U || ~B
[r]
0 ) = [1] (3)

and may be interpreted in a way similar to that con-
cerning convergence of a sequence of variables in clas-
sical statistics — if the decisive difference is seen, that
[L; U ] is an interval and normally not a single number.
From the facts given, it is not possible to describe the
result by more information than, what may be charac-
terized by “finally: L ≤ tr ≤ U”. Neither convergence
nor divergence of the sequence tr, r = 1, ..., can be
excluded as a possible conclusion. As an appropri-
ate new expression to denote results of this type the
sentence “The sequence tr inverges the set [L; U ]” is
proposed.

5 Frequency Interpretation

As a consequence of these results a frequency inter-
pretation of the Logical concept of probability is avail-
able.

If (A||B) is a P-argument with P (A||B) = [L; U ] in
a kind of thought experiment, then (A||B) may be
conceived as one out of a potentially infinite sequence
of mutually independent P-arguments (Ai||Bi) with
exactly the same probability assessment:

P (Ai||Bi) = [L; U ], i = 1, 2, ...

Then the P-argument (Â[r]||B̂[r]) is considered, where

B̂[r] :=

r
⋂

i=1

Bi

is the conjunction of all single premises and

Â[r] :=
⋃

I⊆{1, ..., r}
rL≤|I|≤rU





⋂

i∈I

Ai ∩
⋂

i∈{1, ..., r}\I

¬Ai





is the adjunction of all combined conclusions, for
which the proportion of Ai lies between L and U .

Due to (2) and (3)

lim
r→∞

P [r](Â[r]||B̂[r]) = [1]

holds.

If only r is large enough, the conclusion Â[r] can be
derived from the premise B̂[r] with practical surety.

Therefore the P-argument (A||B) with
P (A||B) = [L; U ] can be interpreted as if it was
one out of a huge set of mutual independent
P-arguments (Ai||Bi), for which the proportion of
successful arguments (Ai||Bi) — producing unsuc-
cessful arguments (¬Ai||Bi) — lies between L and
U , the proportion of unsuccessful arguments (Ai||Bi)
— and therefore successful arguments (¬Ai||Bi) —
lies between 1 − U and 1 − L.

The conceptual basis of this kind of procedure is given
by Cournot’s Lemma, which was formulated with ref-
erence to the objectivistic view on probability, and
can be transferred to the Logical concept in the fol-
lowing way:

Cournot’s Lemma: If L(A||B) = 1 − ε and ε is
extremely small, the P-argument (A||B) may be un-
derstood as if P (A||B) = [1]. �

The validity of this interpretation is founded on
the fact that in a set of mutually independent
P-arguments, for which only P (Ai||Bi) = [L; U ] is
known, obviously no subset can be identified, for
which an additional information about the proportion
of successful arguments (Ai||Bi) would be possible.

It must be pointed to the fact, that the value of
this frequency-interpretation of the Logical concept of
probability in the first line depends on the concept of
independent P-arguments: A set of mutual indepen-
dent P-arguments is defined by contents of premises
and conclusions. If additionally all of them are evalu-
ated by the same P (Ai||Bi) according to the axioms
of the Logical concept, and if the set is large enough,
inference about the proportion of successful ones in
the set is possible.

The availability of an unassailable frequency interpre-
tation of the Logical concept is of high importance
with respect to the Symmetric theory (see [15]): In
this theory probabilistic statements about arguments
are employed not only to describe statistical modeling
but also — by means of dual W-fields — for statistical
inference. The concept of imaging any evaluated ar-
gument as one out of a potentially infinite sequence of
mutually independent arguments with the same prob-
ability guarantees the uniformity in understanding the
assessments employed in modeling as well as in infer-
ence.



Finally it must be mentioned that it is possible to
improve the result of weak invergence: If a more gen-
eral concept of W-field is introduced, the concept of
strong invergence can be defined and it can be proven,
that tr inverges [L; U ] with probability [1] according
to this concept. However, this result does not influ-
ence the understanding of a frequency interpretation
of the Logical concept.

6 Conclusions and Prospect

When early in the 17th century the concept of prob-
ability arose from the study of games of chance, the
possibility of repeating any game was a fundamental
idea, comprising the concept of mutual independence
of the repetitions. Multiplicativity of probability un-
der this supposition was accepted as intuition result-
ing in the close relationship between frequency and
probability ([14], pp. 42 ff.).

When the theory of probability developed in the fol-
lowing centuries it was obvious that mutual indepen-
dence of events is a relation which cannot be defined
without employment of exogenous concepts.

It was A. N. Kolmogorov who produced a solution by
defining mutual independence via multiplicativity of
probabilities ([9], pp. 8–12 of the English version),
hereby accepting some border cases which are more
or less counter-intuitive.

Employment of imprecise probabilities, as it is prop-
agated by Peter Walley must rely on definitions as
they are given for precise probabilities. Owing to a
behaviouristic approach the concept of irrelevance is
near at hand ([3]). As long as probability is seen as
a one-place-function — attributed to events or state-
ments — this remains conditional irrelevance of one
event with respect to another one. Considerations of
this kind come near to a justification of multiplica-
tivity, but fail to explain independence without using
the concept of probability ([3]). An additional aspect
is provided by the question which type of conditional
interval probability is to be employed in such consid-
eration ([1]). Altogether: The difference between the
concept of independence as employed in the present
approach and other concepts of independence intro-
duced in methodology of imprecise probability is fun-
damental: Independence of P-arguments is defined by
the contents of propositions employed, while indepen-
dence of events with imprecise probability is defined
by relations of — total or conditional — probabilities.

This remains the situation of classical probability the-
ory according to the objectivistic view. By means of
the weak law of large numbers a frequency interpre-
tation of classical probability can be derived, based

on the concept of a sequence of mutual independent
events with the same probability.

Criticism of the objective view stresses that probabil-
ity being the conceptual basis defining independence
of events, it should not be interpreted by a character-
istic of a sequence of mutual independent events.

If probability is attributed to arguments — instead of
events — the situation is different, since independence
of two arguments can be identified with irrelevance of
both premises with respect to the conclusion of the
other argument.

The ISIPTA’05 paper ([15]) defines mutual indepen-
dence of arguments by means of the probability assess-
ment: It is in fact Axiom L III of the present paper
which is employed in [15] to distinguish mutual inde-
pendent arguments without denoting this procedure
explicitly. Simultaneously multiplicativity of proba-
bility for independent arguments is required: Thus
Axiom L III of the ’05-paper combines two different
aspects in one equation.

This procedure can be criticized not only because of
its complexity, but also with respect to the detail that
it encourages objections against a frequency interpre-
tation of probability employing a sequence of inde-
pendent arguments because of the role of probability
in defining independence.

The present paper relies on definitions of irrelevance
and independence through the contents of the propo-
sitions involved. Axiom L III contains the demand
that irrelevance always is reflected by the probability
assessment, and Axiom L IV insists on multiplicativ-
ity with respect to conclusions in case of mutual inde-
pendence — in analogy to multiplicativity in classical
probability.

Consequently the Logical concept of probability ac-
cording to Section 5 is characterized by a frequency
interpretation employing an autonomous concept of
independence — a feature not to be found elsewhere.

This result characterizes the Symmetric theory of
probability, which relies decisively on the Logical con-
cept. The establishment of duality between W-fields
generates a methodology of statistical inference em-
ploying the concept of probability in the same way as
in statistical modeling attached to P-arguments.

Any statement of probability arising from applied
Symmetric theory therefore is of the same quality and
should be understood by means of the frequency in-
terpretation: one out of a very large series of assess-
ments with the same [L; U ] concerning mutually inde-
pendent P-arguments. The proportion of “successful”
arguments in this series lies between L and U .



Present research into Symmetric theory aims at the
range of possible applications. Which types of prob-
lems in classical statistics can be solved by means of
the concept of duality?! A comprehensive report [17]
is in preparation.
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