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Abstract

When extending classical statistical models to impre-
cise probabilities, one fundamental difficulty, which
may have hindered some powerful practical applica-
tions, is the following gap: While classical statistical
models are typically based on absolutely continuous
probability distributions, most computational meth-
ods developed for handling imprecise probability mod-
els rely on finite sample spaces. A natural way to close
this gap is discretization of the underlying continuous
probability distribution. This, however, is far from
straightforward, because näıve discretization by mere
rounding may cause a substantial bias; even moments
of very low order would be distorted. The present pa-
per discusses the application of Luceños’ ([10]) so-to-
say adaptive discretization method in imprecise prob-
ability models. We firstly recall two theorems, show-
ing, for any fixed natural number r, how to construct
a discrete random variable such that its first, second,
... r-th moment coincides with the corresponding mo-
ment of the underlying continuous distribution. (In
addition, also coincidence of the distribution functions
in a fixed number of points can be enforced.) Then
we illustrate the power of the method by utilizing it
in decision problems under ambiguity.

Keyword: Decision making under ambiguity, dis-
cretization, Gaussian quadrature, imprecise probabili-
ties, interval probability, linear programming, Luceño,
numerical integration.

1 Introduction

Classical statistical models typically are based on
parametric, absolutely continuous probability distri-
butions on the real line. Handling extensions of these
models in the imprecise probability framework, quite
often becomes very demanding from the computa-
tional point of view, and then approximative tech-
niques are the best one can hope for, the more as also
in classical statistics many integrals of less smooth

functions can be only obtained numerically. A natural
idea in this context is discretization, in order to make
available powerful algorithms (for instance for han-
dling graphical models ([4]) or decision making ([9],
[17]) that explicitly rely on finite spaces to obtain ap-
proximate solutions in this generalized setting. How-
ever, such discretizations need some care; for more
than hundred years, since the work of Sheppard ([13])
at the end of the nineteenth century, statisticians have
been well aware that analysis based on rounded data
may be severely biased, and so discretization by mere
rounding or other ad-hoc techniques is a bad advice.
Sheppard also developed a simple correction formula,
the applicability of which, however, is restricted to
the r-th moment of a normal distribution and further
regularity conditions. Applying this “correction” to
other distributions or more complex functions of ran-
dom variables can even increase the bias ([18], [1]).

In this paper we study a more sophisticated discretiza-
tion procedure, which discretizes the underlying dis-
tribution in an adaptive way such that, for any r, the
r-th first moments of the new, discretized distribu-
tion agree with the ones from the original distribu-
tion. The method is based on Gaussian quadrature;
its power in statistical applications is advocated by
Luceño ([10]), to which we refer when describing the
essentials of the technique. We claim that these re-
sults are even more important in the area of impre-
cise probabilities, for the reasons outlined above. To
corroborate this thesis, we illustrate the discretiza-
tion technique by applying it to two types of decision
problems under ambiguity.

In more detail, the paper is organized as follows: In
Section 2 we prepare the ground by recalling Luceños
([10]) two main theorems and briefly discussing issues
of concrete calculation of the discretization. Our ap-
plication to decision theory is divided in four sections.
In Section 3 we recall basic notions, which then are
used to explain in Section 4 two different general types
of discretizations. In Section 5 it is shown how to use



one discretization technique in parametric situations
with non-elementary utility functions: prior informa-
tion is assumed to be described by a set of parametric
distributions with varying parameters. We calculate
E-admissible actions as well as the Γ-maximin solu-
tions. While these results may be understood as a
direct extension of numerical integration procedures
from classical probability to the imprecise probabil-
ity framework, the importance of the second type of
discretization, the construction of an approximately
equivalent decision problem becomes unambiguously
evident in Section 6, where envelopes of parametric
sets are considered. After choosing a reference distri-
bution which determines the concrete discretization,
we transform the whole decision problem on an infi-
nite state of natures to an approximately equivalent
decision problem based on a finite set of states of na-
ture, and then give E-admissible and Γ-maximin so-
lutions by adapting the algorithms from [9] and [17].

2 Luceños Discretization Method

2.1 Two Fundamental Theorems

One can understand Luceños article discrete approx-
imations to continuous univariate distributions ([10])
as a kind of ”translation” of the Gaussian quadrature
method for integration into probability theory.

The central idea of the Gaussian quadrature method
is to replace an integral over a function h(x) and its
weight function w(x) by a sum, i.e. to take

∫ b

a

h(x)w(x)d(x) ≈
N∑

j=1

h(xj)wj , (1)

where wj and xj are chosen in a sophisticated way
such that one can approximate the value of the inte-
gral numerically with rather high accuracy. To find
the nodes xj and the weights wj , j = 1, . . . , N , the
roots of recursively defined orthogonal polynomials
of degree N are used, which depend on w(x). Un-
like some other numerical integration methods, e.g.
the Newton-Cotes formulas, the abscissae and weights
here are found dynamically, which means that they
are adapted to the shape of the original function and
therefore the approximation of the integral is very ac-
curate (for Gaussian quadrature and other numerical
integration methods see for example [15]).

In the following statistical application of this method
the weight function w(x) is the probability density
function (PDF) of a univariate continuous random
variable X, whereas wi, i = 1, . . . , N constitute the
probability mass function (PMF) of the corresponding
discrete random variable Y . The detailed proceeding

and some fundamental properties of the approxima-
tions are described in two theorems, which we recall
here from [10].

Proposition 1 (Luceño) Consider two univariate
random variables X and Y on a domain [a, b] with
−∞ ≤ a ≤ x ≤ b ≤ ∞.1 Let X be (absolutely) con-
tinuous with probability density function (PDF) w(x),
having finite moments of any order, and let Y be dis-
crete on N atoms x1, . . . , xN with probability mass
function (PMF) w1, . . . , wN . Then

E(Xr) = E(Y r),∀r ∈ {0, . . . , 2N − 1} (2)

if and only if the nodes x1, . . . , xN and the weights
w1, . . . , wN satisfy the following two conditions:

i) x1, . . . , xN are the roots of the polynomial QN (x)
of degree N defined by the three-term recursion

Qi+1(x) = (x− δi+1)Qi(x) − γ2
i+1Qi−1(x), (3)

i ≥ 0, where Q−1(x) ≡ 0, Q0(x) ≡ 1 and

δi+1=IE{XQ2
i (X)}/IE{Q2

i (X)}, i ≥ 0, (4)

γ2
i+1=

{

0, i = 0

IE{Q2
i (X)}/IE{Q2

i−1(X)}, i ≥ 1.
(5)

ii) the probabilities w1, . . . , wN are the solution of
the linear system

N∑

j=1

Qk(xj)wj =

{

1, k = 0

0, k = 1, . . . , N − 1.
(6)

In addition, the cumulative distribution functions
(CDFs) of X and Y can be forced to agree at least in
a given set of points:

Proposition 2 (Luceño) Consider the situation of
Proposition 1. Let c0 = a < c1 < . . . < cM−1 <
cM = b such that Ii =

∫ ci
ci−1

w(x)dx > 0 for all i =

1, . . . ,M , and consider the discrete random variables
Yi, i = 1, . . . ,M with atoms xi1, . . . , xiN and weights
wi1, . . . , wiN arising from applying Proposition 1 to
the random variables Xi := X · 1[ci−1,ci].

Then, for the random variable Z with atoms
x11, . . . , x1N , x21, . . . , x2N , . . . , xM1, . . . , xMN and
weights I1 · w11, . . . , I1 · w1N , I2 · w21, . . . , I2 ·
w2N , . . . , IM · wM1, . . . , IM · wMN ,

E(Xr) = E(Zr), ∀r ∈ {0, . . . , 2N − 1} , (7)

and the CDFs of X and Y coincide at least at the
abscissae c0, c1, . . . , cM−1, cM .

1To include the statistical standard distributions, without
the need to distinguish between the domain IR and some
bounded domain, we allow for a = ∞ and b = ∞, but im-
plicitly assume f(−∞) = f(∞) = 0



2.2 Easier Calculations in Standard Cases

In the case where the weight function belongs to a
standard family, there are well known polynomials,
which can be used instead of the three-term recursion
just described to find the abscissae and correspond-
ing weights. For example, for the normal distribu-
tion with mean µ and variance σ2 one can use the
Gauss-Hermite polynomials with the weight function
w(x) = e−x

2

on the interval −∞ < x <∞:2

Hj+1(x) = 2xHj(x) − 2jHj−1(x) with H1(x) = 1

Given the roots x
(GH)
i and weights w

(GH)
i of the poly-

nomial with degree N , one can obtain the random
Variable Y and its PMF through (see [10], p.347):

Yj =µ+ σx
(GH)
j

√
2, wj =

1√
π
w

(GH)
j , j = 1, . . . , N.

However there are only very few, classical families
where one can easily use well known polynomials to
find the new variable.

2.3 Nonstandard Case

For the partial intervals used in Proposition 2 the
weights do not generally belong to any of these clas-
sical families. As a consequence, there are no well
known polynomials which can be used to find the new
variable, and the three term recursion described above
has to be used, leading to another numerical problem:
how to solve the inner products in Part i) of Propo-
sition 1 to determine the γis and δis, if w(x) is no
classical weight?

Based on the knowledge of the so called ”modified

moments” νj =
∫ b

a
πj(x)w(x)dx of orthogonal polyno-

mials πj , Sack and Donavan ([12]) offer a numerically
stable algorithm to find the coefficients γ2

j and δj of
the recursion. Wheeler ([22]) improved this method
to an O(N2) algorithm. Other solutions are presented
by Gautschi ([6]). One simple and heuristic way is
to approximate the inner products with an adequate
quadrature rule. In the further calculations presented
here this simple method is used, because the focus of
this paper is mostly on the construction of the new
discrete random variable, not directly on the exact
calculation of an integral.

In a last step the weights wi and nodes xi of the new
variable have to be found. They result from the eigen-

2For some other distributions there are also well known poly-
nomials, which can be used directly to find the discretization:
For the gamma distribution the Gauss-Laguerre polynomials
can be used, for the beta distribution the Gauss-Jacobi poly-
nomials and for the uniform distribution the Gauss-Legendre
polynomials (for details see [10]).

values and eigenvectors of a tridiagonal matrix con-
sisting of the γ2

i and δi from (5) and (4) (for details
see [15], p.179f.).

2.4 Accuracy of the Approximation

If the focus of the approximation is on the shape of a
continuous CDF, one will use the method described in
Proposition 2. The accuracy of this discrete approx-
imation depends on the way the partition of [a, b] is
chosen. One first possibility is to split the support in
inner intervals [ci−1, ci], i = 2, . . . ,M − 1 of the same
size and two possibly larger outer intervals if the do-
main is infinite. The obvious problem is that then
one has the same number of interpolation points in
areas where the PDF is high (which means that the
CDF has a big increase) as in areas with low PDF.
A more satisfying method is to use the PDF (if it is
numerically manageable) to find a more appropriate
partition. One can split the support in M quantiles
and use them as the c′js. In this way the intervals
are adjusted to the shape of the original distribution:
they are small where the PDF is high and wide where
the PDF is low, and so finally in the important areas
of the support there are more nodes than in the less
important ones.3

3 Decision Making under Ambiguity,

Basic Notions

To illustrate and exemplify the power of Luceños
method in the area of imprecise probabilities, we ap-
ply it to some general decision problems under ambi-
guity. To prepare the ground we briefly recall the
basic setting of decision theory, where one has to
choose an optimal action from a non-empty, finite
set A = {a1, ..., an} of possible actions. The conse-
quences of every action depend on the true, but un-
known state of nature ϑ being an element of a space
Θ. The corresponding outcome is evaluated by the
utility function u : (A × Θ) → R and by the asso-
ciated random variable u(a) on Θ. Often it makes
sense to study randomized actions in addition, which
can be understood as a classical probability measure
λ = (λ1, ..., λn) on (A,Po(A)), where λi is interpreted
as the probability with which action ai is taken. Then
u(·) and u(·) are extended to randomized actions by
defining u(λ, ϑ) :=

∑n

s=1 u(as, ϑ)λs. (Next to sim-
plifying calculations, under some criteria the optimal
randomized action may be superior to the optimal
unrandomized one.)

3Several tests in [11], chapter 3 for this approximation to
the standard normal distribution show empirically that, for a
sufficiently large M , samples of the new discrete variable cannot
be distinguished any more from the original variable.



This model contains the essentials of every (formal-
ized) decision situation under uncertainty and is ap-
plied in a huge variety of disciplines. If the states of
nature are produced by a perfect random mechanism,
and if the corresponding probability measure π(·) on
(Θ,Po(Θ)) is completely known, the Bernoulli princi-
ple is nearly unanimously favored. One chooses then
the unrandomized action a∗ or the randomized action
λ∗ maximizing the expected utility

Eπu(a) :=

∫

u(a, ϑ)dπ(ϑ) (8)

and Eπu(λ) :=
∫
u(λ, ϑ)dπ(ϑ) among all a and all λ,

respectively. a∗ and λ∗, respectively, is called Bayes
action with respect to π. In many applications, how-
ever, it is not possible to describe the prior knowledge
on the stochastic behavior of the states of nature by a
classical probability measure, and a more general de-
scription of ambiguity is needed, as provided by im-
precise probabilities and related approaches (see, in
particular, [19] and [21]).

From the technical point of view, the usual concepts
of imprecise probability lead to convex sets M of clas-
sical probabilities. Every distribution π from M pro-
duces a classical expected utility Eπu(λ). Assuming
M 6= ∅, all possible expected utilities Eπu(λ) range
within the interval

[
EMu(λ) , EMu(λ)

]
, (9)

and this interval-valued quantity is called generalized
expected utility. Based on this notion of generalized
expected utility several optimality criteria are com-
mon. An overview is given in [16] where also further
references are provided. Here two of them are con-
sidered: the Γ-maximin criterion and the criterion of
E-admissibility.

The Γ-maximin criterion considers a worst case sce-
nario, which means EMu(λ) is evaluated only. Then
an action λ∗ is optimal iff for all λ

EMu(λ∗) ≥ EMu(λ). 4 (10)

The concept of E-admissibility on the other hand typ-
ically does not offer a unique action as the one to
choose, but a set of optimal actions: An action5 a∗ is
said to be E-admissible in M with respect to a set of
prior probabilities M, iff there exists a classical prior

4This concept is a very conservative decision rule, similarly
to the maximin rule in the classical decision theory: in the case
of complete ambiguity both criteria coincide.

5Under the criterion of E-admissibility usually consideration
is confined to the unrandomized actions. If needed, the algo-
rithms used later on can be extended to randomized actions
(cf. [17, p. 357]).

π(·) ∈ M such that a∗ is Bayes action with respect to
π(·) for all actions a under consideration.6

4 Two Types of Discretization

In the case of continuous distributions of the states of
nature practical handling these criteria may encounter
severe difficulties. Except in special cases, where the
distributions are stochastically ordered and or the ex-
pected utility is easily expressed by a underlying pa-
rameter, it is hard or even impossible to determine
optimal actions by evaluating the integrals (8). Since
for finite set of states of nature powerful algorithms
exist, decision making provides an area where Luceños
discretization techniques is quite welcome.

To implement the discretization, we apply Proposi-
tion 1 and 2 by assuming there is a random variable
X. In the background, that takes values in Θ pro-
ducing the states of natures. Applying the general
techniques to this variable X setting in (1) as well as
to w(·) = π(·) and h(·) = u(a, ·) and h(·) = u(λ, ·), re-
spectively, note that not only the weights but also the
nodes depend on the underlying probability distribu-
tion. Therefore, for a given set M of continuous distri-
butions on Θ ⊂ R (equipped with the corresponding
Borel σ−field B), two different types of discretization
have to be distinguished, depending whether a sepa-
rate or a common discretization scheme is used:

Type-I discretization: The first possibility is to
apply Proposition 1 or 2 to every element π(·) ∈ M
separately. This means that to every π(·) ∈ M a cor-
responding discrete distribution νπ(·) is constructed
with atoms ϑ1,π, . . . , ϑN,π, and Eπu(λ) is replaced by
its approximative equivalent

IEνπu(λ) =

N∑

j=1

u(λ, ϑj,π)νπ (ϑj,π) . (11)

Type-II discretization: Here Θ itself is discretized.
For this, a certain reference distribution π0(·) ∈ M
is selected, to which then Proposition 1 or 2 is ap-
plied.7 The resulting nodes8 x1, . . . , xN are used to
define a new discrete space Θd = {θ1, . . . , θN} with
ϑ1 =

[
a, (x1 +x2)/2

]
, ϑ2 =

(
(x1 +x2)/2, (x2 +x3)/2

]
,

. . . , ϑN =
(
(xN−1 + xN )/2, b

]
, which then is used to

replace Θ. The utility function is then extended to Θd

6E-admissibility can be considered in a broader sense as a
generalization of the criterion of admissibility in classical deci-
sion theory.

7This method is described later on in Section 6. A glance
at Figure 4 may therefore be helpful.

8For the sake of readability, the dependence on π0(·) is sup-
pressed in the notation here throughout the following defini-
tions.



by assigning the values at the nodes, i.e. by defining

u(a, ϑj) := u(a, xj), ∀j ∈ {1, . . . , N}, ∀a ∈ A .

The nodes of the reference distribution are used to
discretize all elements of M. More precisely, the set
M of continuous probability distributions on (Θ,B)
is replaced by the set P of discrete probability distri-
butions, being the set of all classical probabilities in
accordance with P (·) = [L(·), U(·)] on (Θd,Po(Θd))

9

defined via:10

L
( ⋃

j∈J

{ϑj}
)

= inf
π∈M

π
( ⋃

j∈J

ϑj

)

(12)

and U
( ⋃

j∈J

{ϑj}
)

= sup
π∈M

π
( ⋃

j∈J

ϑj

)

(13)

∀J ⊂ {1, . . . , N + 1} . (14)

Since N may be quite large, in many applications the
computational effort may be substantially reduced by
a further approximation in which not all elements of
Po(Θd) are used in the assignment of P (·). Then the
power set of {1, . . . , N+1} in (14) is replaced by some
subset Jmax, and natural extension is applied to ob-
tain the remaining interval limits L(·) and U(·). A
natural choice for Jmax, that is also applied in Sec-
tion 6, is to consider only connected intervals in the
assignment procedure (cf. also Figure 4).

Both types of discretization have different types of ap-
plications. Type-I discretization necessarily requires
that the density functions of all elements of M have to
be known, in order to able to apply Luceño’s theorems
to each of them. In particular, the set M must be
dominated by the Lebesgue measure (in the measure-
theoretic sense) to guarantee the existence of appro-
priate densities. These conditions do not apply for
the second option, which therefore is more general.
There it is sufficient that the reference distribution
has a known density, the set M itself may even be
undominated, which is usually for instance the case
when considering neighborhood models from robust
statistics (e.g., [7], [3], [20], [14]).

We will discuss both methods, from the general point
of view as well as with the help of examples. For ease
of illustration we will use in both examples a set of
normal distributions. In Case i) it is used immediately
as the credal prior information M, in Case ii) it serves
as a building block to define an appropriate interval-
valued assignment.

9Po(Θd) denotes the power set of Θd.
10By conjugacy (U(·) = 1 − L(·C)) either (12) or (13) would

be sufficient to describe P (·).

5 Applications of Type-I

Discretization

We start with Type-I discretization, where M is a
set of absolutely continuous probability distributions,
to each of which the discretization procedure is ap-
plied. We assume that M can be described by a set
(f(·)ψ))

ψ∈Ψ of densities with the parameter space Ψ

being a compact subset of R
k for some finite k. In this

situation, for every π(·) ∈ M, the expected utility of
an action can be (approximately) calculated by Equa-
tion (11), relying on the new discrete distribution νπ.
The optimal action (the action with the largest ex-
pected utility) can be found with linear optimization.
It can be seen as the value of a function depending
on the unknown parameter ψ. When n, the number
of competing actions is small, as in the following ex-
ample, E-admissible actions as well as the Γ-maximin
action can be extracted graphically by plotting these
functions. Section 5.2 then sketches general compu-
tational tools for complexer situations with larger n.

5.1 Numerical example

In the following the procedure should be firstly ex-
plained with the help of a numerical example. Con-
sider the actions a1, a2 and a3 with their utility func-
tions

u(a1, ϑ) = exp(− exp(ϑ))

u(a2, ϑ) = exp(− exp(ϑ2))

u(a3, ϑ) = 0.1 .

The associated state of nature follow a normal distri-
bution with µ = 1 and σ varying between 0.5 and 1.5.
This is an example where it is impossible to solve the
corresponding integrals of the expected utility analyt-
ically, and we have to rely on Luceños method.11

Relying on the criterion of E-admissibility, the results
can be found in Figure 1. As we are interested in
the expected utility of an action in dependence on σ,
which means in the value of an integral, it is reason-
able to use here the simple Gaussian quadrature rule
from Proposition 1 for the discretization.12 On the
left hand side one can identify the optimal action in
dependence on σ, while on the right hand side the
corresponding expected utility of the optimal action
is shown. Two of the three actions are optimal for
special values of σ; the set of E-admissible actions is
{a1, a2}.

11Such integrals for instance occur when handling frailty or
measurement error in survival models. Note further that with
the first utility function even such common techniques like Tay-
lor series expansion fail to calculate the integral.

12For Figure 1 a discretization with N = 10 points is used
for the normal distribution with µ = 1 and any fixed σ.
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Figure 1: Action with maximal expected utility de-
pending on σ (left), maximal possible utility depend-
ing on σ (right)

If additionally the mean µ is uncertain, the two-
dimensional Figure 1 becomes three-dimensional
(cf. Figure 2). The parameter µ now also varies in
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Figure 2: Action with maximal expected utility de-
pending on σ and µ (left), maximal possible utility
depending on σ and µ (right)

the interval [0.5, 1.5]. Like in the picture before, one
can identify on the left hand side for a special µ-σ
combination the optimal action. On the right there
are again the corresponding expected utilities. For
some µ-σ combinations now also action a3 is optimal,
which means that the set of E-admissible actions con-
sists of all three actions. The degree of the polynomial
was again chosen as 10, so that the continuous prior
distribution was substituted by 10 nodes.

Also the Γ-maximin action can be found graphically.
Figure 3 shows the values of the expected utility of the
actions from the example in dependence on σ, which
is calculated with the help of discretizations with 10
nodes. Action a2 has the highest minimal expected
utility, so it is Γ-maximin action.

5.2 General Algorithms

The method exemplified here is quite general. In more
complex situations, with less smooth utility functions,
or when the utility functions are very similar to each
other, the number of nodes can be enlarged to ob-
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Figure 3: Expected utility depending on σ

tain calculations of sufficient accuracy. This would
increase the computational effort, but does not make
a substantial difference. Of course, especially when
the set of actions is large, graphical solutions may be
insufficient, and general algorithms are needed. For
that purpose, also discretize Ψ, resulting in a grid
ψ1, . . . , ψs, . . . , ψQ of different values.13

That way a finite number of probability distributions
from M is processed, each of which is discretized by
one of Luceño’s theorems, and so eventually a finite
set of probability distributions with a finite domain is
considered. In such a setting the algorithm to deter-
mine Γ−Maximin solutions described in detail in [2,
Theorem 1] can be used mutatis mutandis.14

Also an algorithm to determine E-admissible actions
can be obtained. For its construction, consider the
elements πψ1

(·), . . . , πψQ(·) of M corresponding to the
parameter values ψ1, . . . , ψs, . . . , ψQ. Note that, with
defining for all l = 1, . . . , n and s = 1, . . . , Q,

zsl := Eπψs
u(a∗, θ) − Eπψs

u(al, θ), (15)

an action a∗ is E-admissible, if

∃s ∀l : zsl ≥ 0 , (16)

or equivalently if

∃s : zs := min
l=1,...,n

al ≥ 0 , (17)

which is the case iff the optimum (z∗1 , . . . , z
∗
Q) of the

following optimization problem

Q
∑

s=1

zs → max

zjl ≥ zj ∀l = 1, . . . , n, ∀j = 1, . . . , Q,

13If the parametrization of the elements of M is continu-
ous, as is the case in the commonly used statistical models,
no substantial loss of information should occur as long as Q is
sufficiently large.

14Only the set E(M) arising there in Equation (16) has to be
replaced by Q, and the states of natures have to be redefined
appropriately.



has a component z∗s0 which is non-negative. The fact
that the expectations in (15) can be approximated
according to (11) yields directly an algorithm based
on linear optimization.

6 Application of Type-II

discretization

6.1 Construction of the Discretized Prior
Information

Now we turn to Type-II discretization, which pro-
duces finally an interval probability on a finite state
of natures Θd with corresponding structure P. In
essence, we are now directly in a situation where we
can apply algorithms from [9] and [17] to determine
the E-admissible actions and the Γ-maximin action(s).
To illustrate the general procedure we discuss in some
detail the case where M is a set of parametric distrib-
utions, just as before, but now M is understood as the
prestructure of an interval probability, i.e. our prior
information consists of the lower and upper envelopes
of M, and therefore we explicitly take, for instance,
also convex mixtures of elements of M into consider-
ation allowing for some ambiguity in the shape of the
distributions.

Firstly, in order to define the nodes, a reference distri-
bution π0(·) ∈ M is chosen, which should be located
in the “middle” of M; in its neighborhood there are all
possible prior distributions. As described in Section 4
this reference distribution is discretized with N nodes
x1, . . . , xN , and based on this the new space Θd with
the elements ϕ1, . . . , ϕN is obtained.15 When con-
structing the interval probability P (·) on (Θd,Po(Θ)),
the next step is to determine the infima and suprema
in (12) and (13) from M.16 For this purpose, for every
element π(·) ∈ M the distribution on the discretized
space Θd has to be determined. Taking the lower
envelope over all these distributions, we confine our-
selves for complexity reasons to a support consisting
of connected intervals (and then apply natural exten-
sion). This means we take for every π(·) ∈ M17 the

15It may be helpful to look at Figure 4, which sketches graph-
ically several steps of the described procedure to find the lower
and upper bounds. The reference distribution chosen is de-
picted here together with one other distribution from M.
The curve in the middle shows the reference distribution π0,
while the steps represent its discretization with nodes xj,π0 , j =
1 . . . 5. The corresponding states ϑj are denoted at the abscissa;
the probability masses can be seen on the left. As an example,
one other distribution is discretized, the corresponding values
of the π({ϑj}) can be read at the right side.

16Note that when directly an F-probability on Θ is given,
for instance, by one of the neighborhood models used in robust
statistics, this step can be skipped. Moreover the methods
seem quite attractive to provide a further discretization when
p-boxes [5] are considered.

17In practical calculations most often a further discretization

lower and upper envelope, resulting in

bs,t := L
(
t−1⋃

l=s

{ϑl}
)

and bs,t := U
(
t−1⋃

l=s

{ϑl}
)
. (18)

An essential building block in the whole discretization
procedure are the nodes obtained by discretizing the
reference distribution: Its weights are in this context
much less important than the location of the nodes.
The location determines the intervals ϑj , constituting
the states, and so finally the bounds bs,t and bs,t. So a
discrete variable is aimed at, the distribution of which
approximates the continuous distribution function as
exactly as possible. This means, Proposition 2 should
be used here.

--------------

---------------------

-----------------------------

-----------------------------------
---------------------------------------------

x1
︸ ︷︷ ︸

ϑ1

x2
︸ ︷︷ ︸

ϑ2

x3
︸ ︷︷ ︸

ϑ3

x4
︸ ︷︷ ︸

ϑ4

x5
︸ ︷︷ ︸

ϑ5

π(0)({ϑ1})

π(0)({ϑ2})

π(0)({ϑ3})

π(0)({ϑ4})

π(0)({ϑ5})

------------------------------------------------
------------------------------------------

---------------------------------

-------------------------

π({ϑ1})
π({ϑ2})

π({ϑ3})

π({ϑ4})

π({ϑ5})

Figure 4: Finding of lower and upper probabilities
with the neighborhood of a reference distribution
(sketch). For details see footnote 15.

6.2 E-admissibility

If one now considers again the optimization problem
determining the expected utility, one has to respect
that the considered distributions are not known ex-
plicitly, they just have to satisfy the condition

L
(
t−1⋃

l=s

{ϑl}
)

≤ π(
t−1⋃

l=s

{ϑl}) ≤ U
(
t−1⋃

l=s

{ϑl}
)
.

Next to the auxiliary conditions for λ, i.e.,
∑

i λi = 1
and λi ≥ 0 ∀i, now therefore also the constraints on
πd(·) ∈ P have to be considered.

This can be solved by adopting the algorithm devel-
oped independently by ([9]) and ([17]): With the help
of linear optimization it is possible to decide in the
situation with a discrete, but ambiguous state distri-
bution whether an action ai is E-admissible or not.
For this purpose, for every action ai, the set of all
probability measures from the structure P, for which

by considering a grid analogous to 5.2 has to be used.



ai is optimal, is considered:

Πi =
{

πd(·) ∈ P
∣
∣
∣

N∑

j=1

u(ai, ϑj)πd({ϑj})

≥
N∑

j=1

u(al, ϑj)πd({ϑj}), ∀l = 1, . . . , n
}

If Πi is not empty, then there is a classical proba-
bility measure in P under which ai is optimal and
consequently ai is an E-admissible action.

6.3 Γ-maximin Criterion

Linear programming can be used also for the
Γ-maximin criterion. A straightforward, but ineffi-
cient possibility is, to find the Γ-maximin action with
the help of n = |A| linear programming procedures,
where the expected utility of each action is minimized,
and then the action with the highest minimal value
has to be found. But it is also possible (and more
efficient) to find the optimal action, by considering a
single optimization problem. As described in ([17])
the optimization problem:

min
πd ∈ P

n∑

i=1





N∑

j=1

u(ai, θj)πd({ϑj})



λi −→ max
λ
,

subject to the additional constraint
∑

i λi = 1, can be
transformed into a single linear programming prob-
lem, either by introducing the vertices of the corre-
sponding structure P or by dualization.18 Straightfor-
ward implementations of the method with dualization
and the algorithm described before for the lower and
upper bounds have been used in the example below.

6.4 Numerical Example

In the following these algorithms are applied to a nu-
merical example. Let the utility functions u(ai, ϑ) of
the actions a1, . . . , a5 have the form:

u(a1, ϑ) = 1

u(a2, ϑ) = −(ϑ− 0.5)2 + 2.3

u(a3, ϑ) = −(ϑ+ 0.75)2 + 4.5

u(a4, ϑ) = −|ϑ− 1| + 2.1 and

u(a5, ϑ) = − (ϑ− 1)2

4
+ 1.5.

Again we assume that M consists of all normal dis-
tributions with µ ∈ [0.75, 1.25] and σ ∈ [0.75, 1.25],

18A second advantage of this algorithm is the fact, that it
considers also the mixed extension of the set of actions: the
Γ-maximin action does not necessarily have to be a pure i.e.
non-randomized action (see [2]).

but, as discussed above, we explicitly want to allow for
ambiguity concerning the type of the distribution and
therefore take M only as a prestructure (cf. [21]), i.e.
as a building block to construct an interval-valued as-
signment - and a corresponding structure (set of com-
patible distributions) - by passing over to the lower
and upper envelope. Firstly the lower and upper
bounds have to be found. A normal distribution with
µ = 1 and σ = 1 seems to be a natural choice for
the reference distribution. This distribution is now
discretized with a fixed number N of nodes. Accord-
ingly normal distributions, which are inside the given
bounds for µ and σ2 are used to find the interval
limits bs,t and bs,t in (18). In the first part of this
example the discretization method based on Propo-
sition 2 with N = 3 and M = 10, i.e. together 30
nodes, has been chosen. To find the bounds, the nor-
mal distributions with µ ∈ [0.75, 0.76, . . . , 1.25] and
σ ∈ [0.75, 0.76, . . . , 1.25] have been considered. Im-
plementation of the algorithms from ([17]) yields for
the criterion of E-admissibility the vector (0, 1, 1, 1, 1):
actions a2, a3, a4 and a5 are E-admissible under these
constraints, action a1 is not E-admissible. The op-
timal action under the Γ-maximin criterion is a5

(λ = (0, 0, 0, 0, 1)) with a minimal expected utility
of 1.106. For comparison, the same calculation has
been made with the discretization method based on
Proposition 1 with N = 30 nodes. The resulting val-
ues differ: just a4 and a5 are E-admissible actions,
while a5 is also here Γ-maximin action with a mini-
mal expected utility of 1.087.

6.5 Notes on the Accuracy of the Results

It is certainly better to use the method of Proposi-
tion 2: it produces a new random variable with a dis-
tribution function which is more similar to the shape
of the original distribution than the function of a vari-
able produced with the ordinary Gaussian quadrature
rule. Indeed the results, as seen above, are different.
For explanation see the following Figure 5. It shows
the differences between the application of both propo-
sitions and their consequences for finding the lower
and upper bounds: The new variable produced with
the method in Proposition 1 shows big differences to
the distribution function of the original distribution,
while the curve of the second method can hardly be
distinguished from the continuous distribution (pic-
ture on the left). The number of nodes was in the
first theorem N = 60, while in the second one with
N = 3 and M = 20 was used, leading altogether again
to 60.

The relatively bad approximation of the original CDF
by Proposition 1 follows from the fact that in the sim-
ple Gaussian quadrature the nodes for the whole sup-
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Figure 5: Discretization with Proposition 1 respec-
tively 2 (left). Lower/upper bounds for the probabil-
ities π({ϑj}) calculated with both methods (right).

port are chosen with one single polynomial. For this
reason a lot of nodes are located in the less interesting
outer areas of the support. And, as explained above,
the locations of the nodes are more important to find
the bounds bs,t and bs,t than the weights (which would
be no problem for the method in Proposition 1). The
approximation in the inner areas of the support is
much exacter with the second method: with a clever
choice of the intervals there are a lot of nodes in the
important areas. At the end both methods lead to
different values of bs,t’s and bs,t’s, whereas the val-
ues obtained by applying Proposition 2 are to be pre-
ferred as explained above. On the right hand side
of Figure 5 one can see these differences in the dis-
played bj−1,j and bj−1,j . The curves in the middle
are the discretizations of the reference distribution,
below there are the bj−1,j , above the bj−1,j .

For the differences between both methods concerning
the evaluation of the Γ-maximin action watch Figure 6
which shows the results of the linear optimization for
obtaining the Γ-maximin solution with both methods.
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Figure 6: Γ-maximin action, found with Theorem 1
respectively Theorem 2. Upper part of the figure:
expected utility value of the Γ-maximin action, lower
part: which action is Γ-maximin?

In the upper part of each graph one can see the calcu-
lated minimal expected utility value of the Γ-maximin
action. The lower part shows the corresponding ac-
tion. The results based on Proposition 1 oscillate at
the beginning between a5 and a4 and stay finally sta-
ble at action a5. Also with the method of Proposition
2 (withN = 3) the Γ-maximin action at the beginning
is a4. But relatively quickly, from M = 4 on, which
is discretization with 12 nodes, a5 stays the optimal
solution.

The expected values oscillate with both methods in
the same way. But with a high number of nodes the
results become more stable. As explained above, the
results of Proposition 2 are better in a case, where the
results differ.

7 Concluding Remarks

We have discussed a sophisticated method for dis-
cretizing a continuous random variable. In contrast
to straightforward ad-hoc discretizations, for instance
by rounding, one is able to enforce important relations
between both variables: the discrete variable and the
continuous variable have a given number of moments
in common, and also their distribution functions can
be ensured to coincide in a certain set of points.

In our view this makes the method quite attractive
in imprecise probability theory far beyond decision
theory, where we have exemplified the power of the
method in two typical applications. Further fruitful
areas of application include the calculation of poste-
rior probabilities from the generalized Bayes rule for
continuous distributions and the extension of graph-
ical models based on continuous distributions to im-
precise probabilities.

Of course, the presentation given here is mainly an
exploratory sketch of some basic ideas. Deeper inves-
tigations are urgently needed in order to find general
recommendations on the trade-off between complexity
and accuracy of the approximation. In this respect,
also special attention has to be paid to the utility func-
tion, in particular when it is not smooth.19 Another
important detail is the sensitivity of the results with
respect to the choice of the reference distribution. In
rare case only, like the application in neighborhood
models (see the survey in [3, Section 4] as well as [7],
[20], [14]), there is a unambiguously natural candi-
date, and canonical examples providing well-accepted
recommendations have still to be developed.20

19One referee suggested to utilize duality of utility and prob-
ability for this purpose and to take discreteness of the utility
function explicitly into account as well.

20One general idea in this direction we owe a referee, who
suggested to choose that distribution in M which minimizes
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