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Abstract
We give an overview of two approaches to probability the-
ory where lower and upper probabilities, rather than proba-
bilities, are used: Walley’s behavioural theory of imprecise
probabilities, and Shafer and Vovk’s game-theoretic ac-
count of probability. We show that the two theories are
more closely related than would be suspected at first sight,
and we establish a correspondence between them that (i)
has an interesting interpretation, and (ii) allows us to freely
import results from one theory into the other. Our approach
leads to an account of immediate prediction in the frame-
work of Walley’s theory, and we prove an interesting and
quite general version of the weak law of large numbers.

Keywords. Game-theoretic probability, imprecise prob-
abilities, coherence, conglomerability, event tree, lower
prevision, immediate prediction, Prequential Principle, law
of large numbers, Hoeffding’s inequality.

1 Introduction

In recent years, we have witnessed the growth of a num-
ber of theories of uncertainty, where imprecise (lower and
upper) probabilities and previsions, rather than precise (or
point-valued) probabilities and previsions, have a central
part. Here we consider two of them, Glenn Shafer and
Vladimir Vovk’s game-theoretic account of probability [18],
which is introduced in Section 2, and Peter Walley’s be-
havioural theory [20], outlined in Section 3. These seem
to have a rather different interpretation, and they certainly
have been influenced by different schools of thought: Wal-
ley follows the tradition of Frank Ramsey [10], Bruno de
Finetti [4] and Peter Williams [24] in trying to establish
a rational model for a subject’s beliefs in terms of her
behaviour. Shafer and Vovk follow an approach that is
strongly coloured by ideas about gambling systems and
martingales. They use Cournot’s Principle to interpret
lower and upper probabilities (see [17]; and [18, Chap-
ter 2] for a nice historical overview), whereas on Walley’s
approach, lower and upper probabilities are defined in terms
of a subject’s betting rates.

What we set out to do here, and in particular in Sections 4
and 5, is to show that in many practical situations, the two
approaches are strongly connected.1 This implies that quite
a few results, valid in one theory, can automatically be con-
verted and reinterpreted in terms of the other. Moreover,
we shall see that we can develop an account of coherent im-
mediate prediction in the context of Walley’s behavioural
theory, and prove, in Section 6, a weak law of large num-
bers with an intuitively appealing interpretation. We use
this weak law in Section 7 to suggest a way of scoring a pre-
dictive model that satisfies A. Philip Dawid’s Prequential
Principle [1, 2].

2 Shafer and Vovk’s game-theoretic
approach to probability

In their game-theoretic approach to probability [18], Shafer
and Vovk consider a game with two players, World and
Skeptic, who play according to a certain protocol. They ob-
tain the most interesting results for what they call coherent
probability protocols. This section is devoted to explaining
what this means.

G1. The first player, World, can make a number of moves,
where the possible next moves may depend on the
previous moves he has made, but do not in any way
depend on the previous moves made by Skeptic.

This means that we can represent his game-play by an
event tree (see also [14, 16] for more information about
event trees). We restrict ourselves here to the discussion of
bounded protocols, where World makes only a finite and
bounded number of moves from the beginning to the end
of the game, whatever happens. But we do not exclude
the possibility that at some point in the tree, World has the
choice between an infinite number of next moves.

1Our line of reasoning here should be compared to the one in [17],
where Shafer et al. use the game-theoretic framework developed in [18]
to construct a theory of predictive upper and lower previsions whose
interpretation is based on Cournot’s Principle. See also the comments
near the end of Section 5.
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Figure 1: A simple event tree for World, displaying the
initial situation �, other non-terminal situations (such as t)
as grey circles, and paths, or terminal situations, (such as
ω) as black circles. Also depicted is a cut of �, consisting
of the situations u1, u2, u3 and u4.

Let us establish some terminology related to World’s event
tree. A path in the tree represents a possible sequence
of moves for World from the beginning to the end of the
game. We denote the set of all possible paths ω by Ω, the
sample space of the game. A situation t is some connected
segment of a path that is initial, i.e., starts at the root of
the tree. It identifies the moves World has made up to a
certain point, and it can be identified with a node in the
tree. We denote the set of all situations by Ω♦. It includes
the set Ω of terminal situations, which can be identified
with paths. All other situations are called non-terminal;
among them is the initial situation �, which represents the
empty initial segment. See Figure 1 for a simple graphical
example explaining these notions.

If for two situations s and t, s is a(n initial) segment of
t, then we say that s precedes t or that t follows s, and
write s v t. If ω is a path and t v ω then we say that the
path ω goes through situation t. We write s @ t, and say
that s strictly precedes t, if s v t and s 6= t. Denote by
↑t := {ω ∈ Ω : t v ω} the set of all paths that go through t.
If we call any subset of Ω an event, then ↑t is the event that
corresponds to World getting to a situation t. It is clear that
not all events will be of the type ↑t.2

Any (partial) function on Ω♦ is called a process, and any
process whose domain includes all situations that follow
a situation t is called a t-process. A special t-process is
the distance d(t, ·) which for any situation s w t returns
the number of steps d(t,s) along the tree from t to s. In
the bounded protocols we are considering here, there is a
natural number D such that d(t,s)≤ D for all s w t.

Similarly, any (partial) function on Ω is called a variable,
and any variable on Ω whose domain includes all paths that
go through a situation t is called a t-variable. If we restrict
a t-process F to the set ↑t of all terminal situations that

2Shafer [15] calls events of this type exact. Further on, in Section 4,
exact events will be the only events that can be legitimately conditioned
on, because only they may occur as part of World’s game-play.

follow t, we obtain a t-variable, which we denote by FΩ.

Call a cut U of a situation t any set of situations that (i)
follow t, and (ii) such that for all paths ω through t [t v ω],
there is a unique u ∈U that ω goes through [u v ω]; see
also Figure 1. A set U of situations is a cut of t if and only
if the corresponding set {↑u : u ∈U} is a partition of ↑t. A
cut can be interpreted as a (complete) stopping time.

If a situation sw t precedes (follows) some element of a cut
U of t, then we say that s precedes (follows) U , and we write
s vU (s wU). Similarly for ‘strictly precedes (follows)’.
For two cuts U and V of t, we say that U precedes V if each
element of U is followed by some element of V .

A child of a non-terminal situation t is a situation that imme-
diately follows it. The set C(t) of children of t constitutes a
cut of t, called its children cut. Also, the set Ω of terminal
situations is a cut of �, called the terminal cut. ↑t is the
corresponding terminal cut of a situation t.

If U is a cut of t, then we call a t-variable g U-measurable
if for all u in U , g assumes the same value g(u) := g(ω) for
all ω that go through u. In that case we can also consider g
as a variable on U , which we can denote as gU .

If F is a t-process, then with any cut U of t we can as-
sociate a t-variable FU , which assumes the same value
FU (ω) := F (u) in all ω that follow u∈U . This t-variable
is clearly U-measurable, and can be considered as a vari-
able on U . This notation is consistent with the notation FΩ

introduced earlier. Similarly, we can associate with F a
new, U-stopped, t-process U(F ), as follows:

U(F )(s) :=

{
F (s) if t v s vU
F (u) if u ∈U and u v s.

The t-variable U(F )Ω is U-measurable, and is actually
equal to FU .

We call a move w for World in a non-terminal situation t any
arc that connects t to one of its children s ∈C(t), meaning
that s = tw is the concatenation of the segment t and the arc
w. World’s move space in t is the set Wt of those moves w
that World can make in t: Wt = {w : tw ∈C(t)}. We have
already mentioned that Wt may be infinite. But it should
contain at least two elements (otherwise there is no choice
for World to make).

We now turn to the other player, Skeptic. His possible
moves may well depend on the previous moves that World
has made, in the following sense. In each non-terminal
situation t, he has some set St of moves s available to him,
called Skeptic’s move space in t.

G2. In each non-terminal situation t, there is a (positive
or negative) gain for Skeptic associated with each of
the possible moves s in St that Skeptic can make. This
gain depends only on the situation t and the next move
w that World will make.



This means that for each non-terminal situation t there is
a gain function λt : St ×Wt → R, such that λt(s,w) repre-
sents the change in Skeptic’s capital in situation t when he
makes move s and World makes move w.

Let us introduce some further notions and terminology
related to Skeptic’s game-play. A strategy P for Skeptic is
a partial process defined on the set Ω♦ \Ω of non-terminal
situations, such that P(t) ∈ St is the move that Skeptic
will make in each non-terminal situation t. With each
such strategy P there corresponds a capital process K P ,
whose value in each situation t gives us Skeptic’s capital
accumulated so far, when he starts out with zero capital
and plays according to the strategy P . It is given by the
recursion relation

K P(tw) = K P(t)+λt(P(t),w), w ∈ Wt ,

with initial condition K P(�) = 0. Of course, when Skep-
tic starts out (in �) with capital α and uses strategy P ,
his corresponding accumulated capital is given by the pro-
cess α +K P . In the terminal situations, his accumulated
capital is then given by the real variable α +K P

Ω
.

If we start in a non-terminal situation t, rather than in �,
then we can consider t-strategies P that tell Skeptic how to
move starting from t, and the corresponding capital process
K P is then also a t-process, that tells us how much capital
Skeptic has accumulated since starting with zero capital in
situation t and using t-strategy P .

Assumptions G1 and G2 determine so-called gambling
protocols. They are sufficient for us to be able to define
lower and upper prices for real variables. Consider a non-
terminal situation t and a real t-variable f . Then the upper
price Et( f ) for f in t is defined as the infimum capital α

that Skeptic has to start out with in t in order that there
would be some t-strategy P such that his accumulated
capital α +K P allows him, at the end of the game, to
hedge f , whatever moves World makes after t:

Et( f ) := inf
{

α : α +K P
Ω ≥ f for some t-strategy P

}
,

(1)
where α +K P

Ω
≥ f is taken to mean that α +K P(ω)≥

f (ω) for all terminal situations ω that go through t. Simi-
larly, for the lower price Et( f ) for f in t:

Et( f ) := sup
{

α : α −K P
Ω ≤ f for some t-strategy P

}
,

(2)
so Et( f ) =−Et(− f ). If we start from the initial situation
t = �, we simply get the upper and lower prices for a real
variable f , which we also denote by E( f ) and E( f ).

A gambling protocol is called a probability protocol when
besides G1 and G2, two more requirements are satisfied.

P1. For each non-terminal situation t, Skeptic’s move
space St is a convex cone in some linear space:

a1s1 +a2s2 ∈ St for all non-negative real numbers a1
and a2 and all s1 and s2 in St .

P2. For each non-terminal situation t, Skeptic’s gain
function λt has the following linearity property:
λt(a1s1 + a2s2,w) = a1λt(s1,w)+ a2λt(s2,w) for all
non-negative real numbers a1 and a2, all s1 and s2 in
St and all w in Wt .

Finally, a probability protocol is called coherent3 when
moreover

C. For each non-terminal situation t, and for each s in St
there is some w in Wt such that λt(s,w)≤ 0.

It is clear what this last requirement means: in each non-
terminal situation, World has a strategy for playing from
t onwards such that Skeptic cannot (strictly) increase his
capital from t onwards, whatever t-strategy he might use.

For such coherent probability protocols, Shafer and Vovk
prove a number of interesting properties for the correspond-
ing lower (and upper) prices. We list a number of them
here. For any real t-variable f , we can associate with a
cut U of t another special U-measurable real t-variable EU
by EU ( f )(ω) = Eu( f ), for all paths ω through t, where u
is the unique situation in U that ω goes through. For any
two real t-variables f1 and f2, f1 ≤ f2 is taken to mean that
f1(ω)≤ f2(ω) for all paths ω that go through t.
Proposition 1 (Properties of lower and upper prices in a
coherent probability protocol [18]). Consider a coherent
probability protocol, let t be a non-terminal situation, f , f1
and f2 real t-variables, and U a cut of t. Then

1. infω∈↑t f (ω)≤Et( f )≤Et( f )≤ supω∈↑t f (ω) [convex-
ity];

2. Et( f1 + f2)≥ Et( f1)+Et( f2) [super-additivity];

3. Et(λ f ) = λEt( f ) for all real λ ≥ 0 [non-negative ho-
mogeneity];

4. Et( f +α) = Et( f )+α for all real α [constant additiv-
ity];

5. Et(α) = α for all real α [normalisation];

6. f1 ≤ f2 implies that Et( f1)≤ Et( f2) [monotonicity];

7. Et( f ) = Et(EU ( f )) [law of iterated expectation].

What is more, Shafer and Vovk use specific instances of
such coherent probability protocols to prove various limit
theorems (such as the law of large numbers, the central
limit theorem, the law of the iterated logarithm), from
which they can derive, as special cases, the well-known
measure-theoretic versions. We shall come back to this in
Section 6.

3For a discussion of the use of ‘coherent’ here, we refer to [17, Ap-
pendix C].



3 Walley’s behavioural approach to
probability

In his book on the behavioural theory of imprecise probabil-
ities [20], Walley considers many different types of related
uncertainty models. We shall restrict ourselves here to the
most general and most powerful one, which also turns out
to be the easiest to explain, namely coherent sets of really
desirable gambles; see also [21].

Consider a non-empty set Ω of possible alternatives ω ,
only one of which actually obtains (or will obtain); we
assume that it is possible, at least in principle, to determine
which alternative does so. Also consider a subject who is
uncertain about which possible alternative actually obtains
(or will obtain). A gamble4 on Ω is a real-valued map on Ω.
It is interpreted as an uncertain reward, expressed in units
of some predetermined linear utility scale: if ω actually
obtains, then the reward is f (ω), which may be positive or
negative. If a subject accepts a gamble f , this means that
she is willing to engage in the transaction where, (i) first it
is determined which ω obtains, and then (ii) she receives
the reward f (ω). We can try and model the subject’s beliefs
about Ω by considering which gambles she accepts.

Suppose our subject specifies some set R of gambles she
accepts, called a set of really desirable gambles. Such a
set is called coherent if it satisfies the following rationality
requirements:

D1. if f < 0 then f 6∈R [avoiding partial loss];

D2. if f ≥ 0 then f ∈R [accepting partial gain];

D3. if f1 and f2 belong to R then their (point-wise) sum
f1 + f2 also belongs to R [combination];

D4. if f belongs to R then its (point-wise) scalar prod-
uct λ f also belongs to R for all non-negative real
numbers λ [scaling].

Here ‘ f < 0’ means ‘ f ≤ 0 and not f = 0’. Walley has also
argued that sets of really desirable gambles should satisfy
an additional axiom, where IB denotes the indicator of the
event B [a gamble that assumes the value one on B and zero
elsewhere]:

D5. R is B-conglomerable for any partition B of Ω: if
IB f ∈R for all B∈B, then also f ∈R [full conglom-
erability].

4Walley [20] assumes gambles to be bounded. We make no such
assumption here. It seems the concept of a really desirable gamble (at least
formally) allows for such a generalisation, because the coherence axioms
for real desirability, as opposed to those for Walley’s related notions of
almost- and strict desirability, nowhere hinge on such a boundedness
assumption, at least not from a technical mathematical point of view.

Full conglomerability is a very strong requirement, and it is
not without controversy. If a model R is B-conglomerable,
this means that certain inconsistency problems when con-
ditioning on elements B of B are avoided; see [20, Sec-
tion 6.8] for more details and examples. Conglomerability
of belief models was not required by forerunners of Walley,
such as Williams [24],5 or de Finetti [4]. While we agree
with Walley that conglomerability is a desirable property
for sets of really desirable gambles, we do not believe that
full conglomerability is always necessary: it seems that we
only need to require conglomerability with respect to those
partitions that we actually intend to condition our model
on.6 This is the path we shall follow in Section 4.

Given a coherent set of really desirable gambles, we can
define conditional lower and upper previsions as follows:
for any gamble f and any non-empty subset B of Ω, with
indicator IB,

P( f |B) := inf{α : IB(α − f ) ∈R} (3)
P( f |B) := sup{α : IB( f −α) ∈R}, (4)

so P( f |B) =−P(− f |B), and P( f |B) is the supremum price
α for which the subject will buy the gamble f , i.e., accept
the gamble f −α , contingent on the occurrence of B. For
any event A, we define the conditional lower probability
P(A|B) := P(IA|B), i.e., the subject’s supremum rate for
betting on the event A, contingent on the occurrence of B,
and similarly for P(A|B) := P(IA|B).

We want to stress here that by its definition [Eq. (4)], P( f |B)
is a conditional lower prevision on what Walley [20, Sec-
tion 6.1] has called the contingent interpretation: it is a
supremum acceptable price for buying the gamble f con-
tingent on the occurrence of B, meaning that the subject
accepts the contingent gambles IB( f −P( f |B)+ ε), ε > 0,
which are called off unless B occurs. This should be con-
trasted with the updating interpretation for the conditional
lower prevision P( f |B), which is a subject’s present (be-
fore the occurrence of B) supremum acceptable price for
buying f after receiving the information that B has occurred
(and nothing else!). Walley’s Updating Principle [20, Sec-
tion 6.1.6], which we shall accept, and use further on in
Section 4, (essentially) states that conditional lower previ-
sions should be the same on both interpretations. There is
also a third way of looking at a conditional lower prevision
P( f |B), which we shall call the dynamic interpretation, and
where P( f |B) stands for the subject’s supremum accept-
able buying price for f after she gets to know that B has
occurred. For precise conditional previsions, this seems
to be the interpretation considered in [6, 11, 12, 17]. It is

5Axioms (D1)–(D4), but not (D5), were actually suggested by
Williams. But it seems that we need at least some weaker form of (D5),
namely the cut conglomerability (D5’) considered further on, to derive
our main results: Theorems 3 and 6.

6The view expressed here seems related to Shafer’s, as sketched near
the end of [13, Appendix 1].



far from obvious that there should be a relation between
the first two and the third interpretations.7 We shall briefly
come back to this distinction in the following sections.

For a partition B of Ω, we let P( f |B) := ∑B∈B IBP( f |B)
be the gamble on Ω that in any element ω of B assumes the
value P( f |B), where B is any element of B.

The following properties of conditional lower and upper
previsions associated with a coherent set of really desirable
gambles were (essentially) proven by Walley.
Proposition 2 (Properties of conditional lower and upper
previsions [20]). Consider a coherent set of really desirable
gambles R, let B be any non-empty subset of Ω, and let f ,
f1 and f2 be gambles on Ω. Then8

1. infω∈B f (ω) ≤ P( f |B) ≤ P( f |B) ≤ supω∈B f (ω) [con-
vexity];

2. P( f1 + f2|B)≥ P( f1|B)+P( f2|B) [super-additivity];

3. P(λ f |B) = λP( f |B) for all real λ ≥ 0 [non-negative
homogeneity];

4. P( f +α|B) = P( f |B)+α for all real α [constant addi-
tivity];

5. P(α|B) = α for all real α [normalisation];

6. f1 ≤ f2 implies that P( f1|B)≤ P( f2|B) [monotonicity];

7. if B is a partition of Ω that refines the partition
{B,Bc} and R is B-conglomerable, then P( f |B) ≥
P(P( f |B)|B) [conglomerative property].

The analogy between Propositions 1 and 2 is striking, even
if there is an equality in Proposition 1.7 and only an in-
equality in Proposition 2.7.9 We now set out to identify the
exact correspondence between the two models.10

4 Connecting the two approaches

In order to lay bare the connections between the game-
theoretic and the behavioural approach, we enter Shafer and

7We may be wrong, but it seems to us that in [17], the authors con-
fuse the updating interpretation with the dynamic interpretation when
they claim that “[their new understanding of lower and upper previsions]
justifies Peter Walley’s updating principle”.

8Here, as in Proposition 1, we implicitly assume that whatever we
write down is well-defined, meaning that for instance no sums of −∞

and +∞ appear, and that the function P( f |B) is real-valued, and nowhere
infinite. Shafer and Vovk do not seem to mention the need for this.

9Concatenation inequalities for lower prices do appear in the more
general context described in [17].

10We shall find a specific situation where applying Walley’s theory leads
to equalities rather than the more general inequalities of Proposition 2.7.
This seems to happen generally for what is called marginal extension
in a situation of immediate prediction, meaning that we start out with,
and extend, an initial model where we condition on increasingly finer
partitions, and where the initial conditional model for any partition deals
with gambles that are measurable with respect to the finer partitions; see
[20, Theorem 6.7.2] and [9].

Vovk’s world, and consider another player, called Subject,
who, in situation �, has certain piece-wise beliefs about
what moves World will make.

More specifically, for each non-terminal situation t ∈
Ω♦ \Ω, she has beliefs (in situation �) about which move
w World will choose from the set Wt of moves available
to him in t. We suppose she represents those beliefs in the
form of a coherent11 set Rt of really desirable gambles on
Wt . These beliefs are conditional on the updating interpre-
tation, in the sense that they represent Subject’s beliefs in
situation � about what World will do immediately after
he gets to situation t. We call any specification of such
coherent Rt , t ∈ Ω♦ \Ω, an immediate prediction model
for Subject. It should be stressed here that Rt should not
be interpreted dynamically, i.e., as a set of gambles on Wt
that Subject accepts in situation t.

We can now ask ourselves what the behavioural implica-
tions of these conditional assessments Rt in the immediate
prediction model are. For instance, what do they tell us
about whether or not Subject should accept certain gam-
bles12 on Ω, the set of possible paths for World? In other
words, how can these beliefs (in �) about which next move
World will make in each non-terminal situation t be com-
bined coherently into beliefs (in �) about World’s complete
sequence of moves?

In order to investigate this, we use Walley’s very general
and powerful method of natural extension, which is just
conservative coherent reasoning. We shall construct, using
the local pieces of information Rt , a set of really desirable
gambles on Ω for Subject in situation � that is (i) coherent,
and (ii) as small as possible, meaning that no more gambles
should be accepted than is actually required by coherence.

First, we collect the pieces. Consider any non-terminal
situation t ∈ Ω♦ \Ω and any gamble ht in Rt . Then with
ht we can associate a t-gamble,13 also denoted by ht , and
defined by

ht(ω) := ht(ω(t)),

for all ω w t, where we denote by ω(t) the unique ele-
ment of Wt such that tω(t) v ω . The t-gamble ht is U-
measurable for any cut U of t that is non-trivial, i.e., such
that U 6= {t}. This implies that we can interpret ht as a
map on U . In fact, we shall write ht(s) := ht(ω(t)), for any
t @ s, where ω is any terminal situation that follows s.

I↑tht represents the gamble on Ω that is called off unless
World ends up in situation t, and which, when it is not called
off, depends only on World’s move immediately after t, and
gives the same value ht(w) to all paths ω that go through

11Since we do not immediately envisage conditioning this local model
on subsets of Wt , we impose no extra conglomerability requirements here,
only the coherence conditions D1–D4.

12In Shafer and Vovk’s language, gambles are real variables.
13Just as for variables, we can define a t-gamble as a partial gamble

whose domain includes ↑t.



tw. The fact that Subject, in situation �, accepts ht on Wt
conditional on World’s getting to t, translates immediately
to the fact that Subject accepts the contingent gamble I↑tht
on Ω, by Walley’s Updating Principle. We thus end up with
a set of gambles on Ω

R :=
⋃

t∈Ω♦\Ω

{
I↑tht : ht ∈Rt

}
that Subject accepts in situation �. The only thing left to
do now, is to find the smallest coherent set ER of really de-
sirable gambles that includes R (if indeed there is any such
coherent set). Here we take coherence to refer to conditions
D1–D4, together with D5’, a variation on D5 which refers
to conglomerability with respect to those partitions that we
actually intend to condition on, as suggested in Section 3.

These partitions are what we call cut partitions. Con-
sider any cut U of the initial situation �. Then the set
of events BU := {↑u : u ∈U} is a partition of Ω, called the
U-partition. D5’ requires that our set of really desirable
gambles should be cut conglomerable, i.e., conglomerable
with respect to every cut partition BU .14

Why do we only require conglomerability for cut partitions?
Simply because we are interested in predictive inference:
we eventually will want to find out about the gambles on
Ω that Subject accepts in situation �, conditional (con-
tingent) on World getting to a situation t. This is related
to finding lower previsions for Subject conditional on the
corresponding events ↑t. A collection {↑t : t ∈ T} of such
events constitutes a partition of the sample space Ω if and
only if T is a cut of �.

Because we require cut conglomerability, it follows in
particular that ER will contain the sums of gambles g :=
∑u∈U I↑uhu for all non-terminal cuts U of � and all choices
of hu ∈ Ru, u ∈U . This is because I↑ug = I↑uhu ∈ R for
all u ∈U . Because moreover ER should be a convex cone
[by D3 and D4], any sum of such sums ∑u∈U I↑uhu over a
finite number of non-terminal cuts U should also belong
to ER . But, since in the case of bounded protocols we
are discussing here, World can only make a bounded and
finite number of moves, Ω♦ \Ω is a finite union of such
non-terminal cuts, and therefore the sums ∑u∈Ω♦\Ω

I↑uhu

should belong to ER for all choices hu ∈Ru, u ∈ Ω♦ \Ω.

Call therefore, for any non-terminal situation t, a t-selection
any partial process S defined on the non-terminal situa-
tions s w t such that S (s) ∈Rs. With such a t-selection,
we can associate a t-process, called a gamble process G S ,
with value

G S (s) = ∑
tvu@s

S (u)(s)

in all situations s that follow t, where it should be re-
called that S (u)(s) = S (u)(ω(u)) for all ω w s (see

14When all of World’s move spaces Wt are finite, cut conglomerability
(D5’) is a consequence of D3, and therefore needs no extra attention.

above). Alternatively, G S is given by the recursion re-
lation G S (sw) = G S (s)+S (s)(w) for all non-terminal
s w t and all w ∈ Ws, with initial value G S (t) = 0. In
particular, this leads to the t-gamble G S

Ω
defined on all

terminal situations ω that follow t, by letting

G S
Ω = ∑

tvu,u∈Ω♦\Ω

I↑uS (u).

We have just argued that the gambles G S
Ω

should belong
to ER for all non-terminal situations t and all t-selections
S . As before for strategy and capital processes, we call a
�-selection S simply a selection, and a �-gamble process
simply a gamble process. It is now but a technical step to
prove Theorem 3 below. It is a significant generalisation,
in terms of sets of really desirable gambles rather than
coherent lower previsions,15 of the Marginal Extension
Theorem first proven by Walley [20, Theorem 6.7.2] and
subsequently extended by De Cooman and Miranda [9].

Theorem 3 (Marginal Extension Theorem). There is a
smallest set of gambles that satisfies D1–D4 and D5’ and
includes R. This natural extension of R is given by

ER :=
{

g : g ≥ G S
Ω for some selection S

}
.

Moreover, for any non-terminal situation t and any t-
gamble g, it holds that I↑tg ∈ ER if and only if there is
some t-selection St such that g ≥ G St

Ω
, where as before,

g ≥ G St
Ω

is taken to mean that g(ω)≥ G St
Ω

(ω) for all ter-
minal situations ω that follow t.

We now use the coherent set of really desirable gam-
bles ER to define special lower (and upper) previsions
P(·|t) := P(·|↑t) for Subject in situation �, conditional
on an event ↑t, i.e., on World getting to situation t, indi-
cated in Section 3.16 We shall call such conditional lower
previsions predictive lower previsions. We then get, using
Theorem 3, that for any non-terminal situation t,

P( f |t) := sup
{

α : I↑t( f −α) ∈ ER

}
(5)

= sup
{

α : f −α ≥ G S
Ω for some t-selection S

}
.

(6)

Eq. (5) is also valid in terminal situations t, whereas Eq. (6)
clearly isn’t.

Besides the properties in Proposition 2, which hold in gen-
eral for conditional lower and upper previsions, the pre-
dictive lower and upper previsions we consider here also
satisfy a number of additional properties, listed in Proposi-
tions 4 and 5.

15The difference in language may obscure that this is indeed a general-
isation. But see Theorem 7 for expressions in terms of predictive lower
previsions that should make the connection much clearer.

16We stress again that these are conditional lower and upper previsions
on the contingent/updating interpretation.



Proposition 4 (Additional properties of predictive lower
and upper previsions). Let t be any situation, and let f , f1
and f2 be gambles on Ω.

1. if t is a terminal situation ω , then P( f |ω) = P( f |ω) =
f (ω);

2. P( f |t) = P( f I↑t |t) and P( f |t) = P( f I↑t |t);

3. f1 ≤ f2 (on ↑t) implies that P( f1|t) ≤ P( f2|t) [mono-
tonicity].

Before we go on, there is an important point that must be
stressed and clarified. It is an immediate consequence of
Proposition 4.2 that when f and g are any two gambles
that coincide on ↑t, then P( f |t) = P(g|t). This means that
P( f |t) is completely determined by the values that f as-
sumes on ↑t, and it allows us to define P(·|t) on gambles
that are only necessarily defined on ↑t, i.e., on t-gambles.
We shall do so freely in what follows.

For any cut U of a situation t, we may define the t-gamble
P( f |U) as the gamble that assumes the value P( f |u) in any
ω w t, where u is the unique element of U that ω goes
through. This t-gamble is U-measurable by construction,
and it can be considered as a gamble on U .

Proposition 5 (Separate coherence). Let t be any situation,
let U be any cut of t, and let f and g be t-gambles, where
g is U-measurable.

1. P(↑t|t) = 1;

2. P(g|U) = gU ;

3. P( f +g|U) = gU +P( f |U);

4. if g is moreover non-negative, then P(g f |U) =
gU P( f |U).

There appears to be a close correspondence between the
expressions [such as (2)] for lower prices Et( f ) associ-
ated with coherent probability protocols and those [such
as (6)] for the predictive lower previsions P( f |t) based on
an immediate prediction model. Say that a given coher-
ent probability protocol and given immediate prediction
model match whenever they lead to identical corresponding
lower prices Et and predictive lower previsions P(·|t) for
all non-terminal t ∈ Ω♦ \Ω.

Theorem 6 (Matching Theorem). For every coherent prob-
ability protocol there is an immediate prediction model such
that the two match, and conversely, for every immediate
prediction model there is a coherent probability protocol
such that the two match.

It is interesting to indicate here how matching is actually
achieved. If we have a coherent probability protocol with
move spaces St and gain functions λt for Skeptic, define

the immediate prediction model for Subject to be (essen-
tially) Rt := {−λ (s, ·) : s ∈ St}. If, conversely, we have an
immediate prediction model for Subject consisting of the
sets Rt , define the move spaces for Skeptic by St := Rt ,
and his gain functions by λt(h, ·) :=−h for all h in Rt .

Theorem 7 (Concatenation Formula). Consider any two
cuts U and V of a situation t such that U precedes V . Then
for all t-gambles f on Ω,17

1. P( f |t) = P(P( f |U)|t);

2. P( f |U) = P(P( f |V )|U).

This theorem, in combination with the following two propo-
sitions (8 and 9), tells us that all predictive lower (and
upper) previsions can be calculated using backwards re-
cursion, by starting with the trivial predictive previsions
P( f |Ω) = P( f |Ω) = f for the terminal cut Ω, and using
only the local models Rt . To see this, observe in addi-
tion that in the above theorem, the t-gamble P( f |V ) is
V -measurable, and therefore actually a gamble on V .

To make clear what the following Proposition 8 implies,
consider any t-selection S , and define the U-called off
t-selection S U as the selection that mimics S until we get
to U , where we begin to select the zero gambles: for any
non-terminal situation sw t, let S U (s) := S (s) if s strictly
precedes (some element of) U , and let S U (s) := 0 ∈ Rs
otherwise. Then

U(G S ) = G S U
and therefore G S

U = G S U

Ω , (7)

so we see that stopped gamble processes are gamble pro-
cesses themselves, that correspond to selections being
‘called-off’ after a cut. This also means that we can ac-
tually restrict ourselves to selections S that are U-called
off in Proposition 8.

Proposition 8. Let t be a non-terminal situation, and let
U be a cut of t. Then for any U-measurable t-gamble f ,
I↑t f ∈ ER if and only is there is some t-selection S such
that I↑t f ≥ G S U

Ω
, or equivalently, fU ≥ G S

U . Consequently,

P( f |t) = sup
{

α : f −α ≥ G S U

Ω for some t-selection S
}

= sup
{

α : fU −α ≥ G S
U for some t-selection S

}
.

If a t-gamble h is measurable with respect to the children
cut C(t) of a non-terminal situation t, then we can interpret
it as gamble on Wt . For such gambles, the following imme-
diate corollary of Proposition 8 tells us that the predictive
lower previsions P(h|t) are completely determined by the
local modal Rt .

17Here too, it is implicitly assumed that all expressions are well-defined,
e.g., that in the second statement, P( f |v) is a real number for all v ∈ V ,
making sure that P( f |V ) is indeed a gamble.



Proposition 9. Let t be a non-terminal situation, and con-
sider a C(t)-measurable gamble h. Then

P(h|t) = Pt(h) := sup{α : h−α ∈Rt}.

5 Interpretation

The Matching Theorem has a very interesting interpreta-
tion. In Shafer and Vovk’s approach, World is sometimes
decomposed into two players, Reality and Forecaster. It
is Reality whose moves are characterised by the above-
mentioned event tree, and Forecaster who determines what
Skeptic’s move space St and gain function λt are, in each
non-terminal situation t. We now make Shafer and Vovk’s
model a bit more involved, by adding something to it.

Suppose that Forecaster has certain beliefs, in situation
�, about what move Reality will make next in each non-
terminal situation t,, and suppose she models those beliefs
by specifying a coherent set Rt of really desirable gam-
bles on Wt . In other words, we identify Forecaster with
Subject.18

When Forecaster specifies such a set, she is making cer-
tain behavioural commitments. In fact, she is committing
herself to accepting, in situation �, any gamble in Rt , con-
tingent on World getting to situation t, and to accepting
any combination of such gambles according to the combi-
nation axioms D3, D4 and D5’. This implies that we can
derive predictive lower previsions P(·|t), with the follow-
ing interpretation: in situation �, P( f |t) is the supremum
price Forecaster can be made to buy the t-gamble f for,
conditional on World’s getting to t, and on the basis of the
commitments she has made in the initial situation �.

What Skeptic can now do, is take Forecaster up on her
commitments. This means that in situation �, he can use
a selection S , which for each non-terminal situation t, se-
lects a gamble (or equivalently, any non-negative linear
combination of gambles) S (t) = ht in Rt and offer the cor-
responding gamble G S

Ω
on Ω to Forecaster, who is bound

to accept it. If Reality’s next move in situation t is w ∈ Wt ,
this changes Skeptic’s capital by (the positive or negative
amount) −ht(w). In other words, his move space st can
then be identified with the convex set of gambles Rt and his
gain function λt is then given by λt(ht , ·) =−ht . But then
the selection S can be identified with a strategy P for
Skeptic, and K P

Ω
=−G S

Ω
(this is the essence of the proof

of Theorem 6), which tells us that we are led to a coher-
ent probability protocol, and that the corresponding lower
prices Et for Skeptic coincide with Forecaster’s predictive
lower previsions P(·|t).

18The germ for this idea, in the case that Forecaster’s beliefs can be
expressed using precise probability models on the L (Wt), is already
present in Shafer’s work, see for instance [18, Chapter 8] and [13, Ap-
pendix 1]. We extend this idea here to Walley’s imprecise probability
models.

In a very nice paper [17], Shafer, Gillett and Scherl discuss
ways of introducing and interpreting lower previsions in a
game-theoretic framework, not in terms of prices that a sub-
ject is willing to pay for a gamble, but in terms of whether
a subject believes he can make a lot of money (utility) at
those prices. They consider such conditional lower previ-
sions both on a contingent and on a dynamic interpretation,
and argue that there is equality between them in certain
cases. Here, we have decided to stick to the more usual
interpretation of lower and upper previsions, and concen-
trated on the contingent/updating interpretation. We see
that also on our approach, the game-theoretic framework is
useful.

This is of particular relevance to the laws of large numbers
that Shafer and Vovk derive in their game-theoretic frame-
work, because such laws can now be given a behavioural
interpretation in terms of Forecaster’s (or any Subject’s)
(predictive) lower and upper previsions. To give an exam-
ple, we now turn to deriving a very general weak law of
large numbers.

6 A more general weak law of large
numbers

Consider a non-terminal situation t and a cut U of t. Define
the t-variable nU such that nU (ω) is the distance d(t,u),
measured in moves along the tree, from t to the unique
situation u in U that ω goes through. nU is clearly U-
measurable, and nU (u) is simply the distance d(t,u) from t
to u. We assume that nU (u) > 0, or in other words that U 6=
{t}. Of course, in the bounded protocols we are considering
here, nU is bounded, and we denote its minimum by NU .

Now consider for each s between t and U a bounded gamble
hs and a real number ms such that hs−ms ∈Rs, meaning
that Forecaster in situation � accepts to buy hs for ms,
contingent on Reality getting to situation s. Let B > 0
be any common upper bound for suphs − infhs, for all
t v s @ U . Then it follows from the coherence of Rs [D1]
that ms ≤ suphs. To make things interesting, we shall also
assume that infhs ≤ms, because otherwise hs−ms ≥ 0 and
accepting this gamble represents no real commitment on
Forecaster’s part. As a result, we see that |hs−ms| ≤ B.

We are interested in the following t-gamble GU , given by

GU =
1

nU
∑

tvs@U
I↑s[hs−ms],

which provides a measure for how much, on average, the
gambles hs yield an outcome above Forecaster’s accepted
buying price ms, along segments of the tree starting in t
and ending right before U . In other words, GU measures
the average gain for Forecaster along segments from t to
U , associated with commitments she has made and is taken
up on, because Reality has to move along these segments.



This gamble GU is U-measurable too. We may therefore
interpret GU as a gamble on U . Also, for any hs and any
u ∈U , we know that because s @ u, hs has the same value
hs(u) := hs(ω(s)) in all ω that go through u. This allows
us to write

GU (u) =
1

nU (u) ∑
tvs@u

[hs(u)−ms].

We would like to study Forecaster’s beliefs (in the initial
situation � and contingent on Reality getting to t) in the
occurrence of the event

{GU ≥−ε} := {ω ∈ ↑t : GU (ω)≥−ε},

where ε > 0. In other words, we want to know
P({GU ≥−ε}|t), which is Forecaster’s supremum rate for
betting on the event that his average gain from t to U will
be at least −ε , contingent on Reality’s getting to t.

Theorem 10 (Weak Law of Large Numbers). For all ε > 0,

P({GU ≥−ε}|t)≥ 1− exp
(
−NU ε2

4B2

)
.

We see that as NU increases this lower bound increases to
one, so the theorem can be very loosely formulated as fol-
lows: As the horizon recedes, Forecaster, if she is coherent,
should believe increasingly more strongly that her average
gain along any path from the present to the horizon will
not be negative. Of course, this is a very general version
of the weak law of large numbers. It significantly extends
the result mentioned in Section 5. Perhaps surprisingly, it
can be seen as generalisation of Hoeffding’s inequality for
martingale differences [7] (see also [22, Chapter 4] and [19,
Appendix A.7]) to coherent lower previsions on event trees.

7 Scoring a predictive model

Suppose Reality follows a path up to some situation uo in
U , which leads to an average gain GU (uo) for Forecaster.
Suppose this average gain is negative: GU (uo) < 0.

Then we see that ↑uo ⊆ {GU <−ε} for all 0 < ε <
−GU (uo), and therefore all these events {GU <−ε} have
actually occurred (because ↑uo has). On the other hand,
Forecaster’s upper probability (in �) for their occurrence
satisfies P({GU <−ε}) ≤ exp(−NU ε2

4B2 ), by Theorem 10.
Coherence then tells us that Forecaster’s upper probability
(in �) for the event ↑uo, which has actually occurred, is
then at most SNU (γU (uo)), where

SN(x) = exp
(
−N

4
x2

)
and γU (u) :=

GU (uo)
B

.

By assumption, γU (uo) is a number in [−1,0). Coherence
requires that Forecaster, because of her local predictive
commitments, can be forced (by Skeptic, if he chooses his

strategy well) to bet against the occurrence of the event ↑uo
at a rate that is at least 1− SNU (γU (uo)). So we see that
Forecaster is losing utility because of her local predictive
commitments. Just how much depends on how close γU (uo)
lies to −1 , and on how large NU is; see Figure 2.

1

1

0
0 −x

1−SN(x)

NU = 5

NU = 10

NU = 100
NU = 500

Figure 2: What Forecaster can be made to pay, 1−SN(x),
as a function of x = γU (u), for different values of N = NU .

The upper bound SNU (γU (uo)) we have constructed for
the upper probability of ↑uo has a very interesting property,
which we now try to make more explicit. Indeed, if we were
to calculate Forecaster’s upper probability P(↑uo) for ↑uo
directly using Eq. (6), this value would generally depend
on Forecaster’s predictive assessments Rs for situations
s that do not precede uo, and that Reality therefore never
got to. We shall see that such is not the case for the upper
bound SNU (γU (uo)) constructed using Theorem 10.

Consider any situation s before U but not on the path
through uo, meaning that Reality never got to this situa-
tion s. Therefore the corresponding gamble hs−ms in the
expression for GU is not used in calculating the value of
GU (uo), so we can change it to anything else, and still
obtain the same value of GU (uo).

Indeed, consider any other predictive model, where the only
thing we ask is that the R ′

s coincide with the Rs for all s that
precede uo. For other s, the R ′

s can be chosen arbitrarily,
but still coherently. Now construct a new average gain
gamble G′

U for this alternative predictive model, where
the only restriction is that we let h′s = hs and m′

s = ms if s
precedes uo. Then we know from the reasoning above that
G′

U (uo) = GU (uo), so the new upper probability that the
event ↑uo will be observed is at most

SNU

(
G′

U (uo)
B

)
= SNU

(
GU (uo)

B

)
= SNU (γU (uo)).

In other words, the upper bound SN(γU (u)) we found for
Forecaster’s upper probability of Reality getting to a sit-
uation uo depends only on Forecaster’s local predictive



assessments Rs for situations s that Reality has actually
got to, and not on her assessments for other situations.
This means that this method for scoring a predictive model
satisfies Dawid’s Prequential Principle [1, 2].

8 Additional Remarks

We have proven the correspondence between the two ap-
proaches only for event trees with a bounded horizon. For
games with infinite horizon, the correspondence becomes
less immediate, because Shafer and Vovk implicitly make
use of coherence axioms that are stronger than D1–D4 and
D5’, leading to lower prices that dominate the correspond-
ing predictive lower previsions. Exact matching would be
restored of course, provided we could argue that these addi-
tional requirements are rational for any subject to comply
with. This could be an interesting topic for further research.
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