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Abstract

Regression is the central concept in applied statistics
for analyzing multivariate, heterogenous data: The
influence of a group of variables on one other vari-
able is quantified by the regression parameter β. In
this paper, we extend standard Bayesian inference on
β in linear regression models by considering impre-
cise conjugated priors. Inspired by a variation and an
extension of a method for inference in i.i.d. exponen-
tial families presented at isipta’05 by Quaeghebeur
and de Cooman, we develop a general framework for
handling linear regression models including analysis
of variance models, and discuss obstacles in direct
implementation of the method. Then properties of
the interval-valued point estimates for a two-regressor
model are derived and illustrated with simulated data.
As a practical example we take a small data set from
the airgene study and consider the influence of age
and body mass index on the concentration of an in-
flammation marker.

Keywords. airgene study, analysis of variance,
exponential family, (imprecise) conjugate priors, im-
precise probability models, interval probability, prior-
data conflict, regression, robust Bayesian inference

1 Introduction and Sketch of the

Argument

From engineering science over econometrics to sociol-
ogy, from psychology over biometrics to medicine, one
of the omnipresent questions is how certain variables
(called covariates/confounders, regressors, stimulus or
independent variables, here denoted by x) influence a
certain outcome (called response or dependent vari-
able z). The answer is obtained from regression mod-
els, and so regression modelling is the central concept
in applied statistics.

The most common and simple case, dating back al-
ready to Gauß, is linear regression (see Section 3.1

for more details on the model), where, possibly after
some transformations, for every unit i, taken from a
sample of size k, the dependent variable zi is assumed
to be of metric scale and to be linearly related to p

independent variables xi1, xi2 . . . , xip:

zi = β1xi1 + β2xi2 + . . .+ βpxip + εi , (1)

where εi is a stochastic error term subsuming the
residual variation beyond the linear relationship be-
tween the variables.

The so-called regression coefficients βj , j = 1 . . . , p
measure the extent to which the dependent variable
is expected to change if the value of the j-th regressor
is enlarged by one unit and all other regressors re-
main unchanged. Often xi1 = 1 for all i and then β1

is called intercept, describing some baseline level. The
special case where all regressors are categorical (and
coded via (several) 0/1 variables) is known as anova
(analysis of variance). The coefficients βj can, for
example, be estimated by the classical least squares
method, or, relying on the Bayesian paradigm, by as-
signing a prior on the βj ’s and updating it in the
light of the data. This update step is especially ele-
gant and simple to perform in situations we will call
luck-models (described in Section 2.1). In our situ-
ation there are several possibilities to construct such
a luck-model. We will rely on that multivariate nor-
mal as the prior for βj , j = 1 . . . , p, which has become
the standard for regression analysis (see, e.g., [13]).

Although imprecise probabilities and related concepts
[21, 26, 18] have proven to be quite powerful and con-
vincing in many areas of application, regression analy-
sis has only lived in the shadows there:1 population
heterogeneity, i.e. individual variation related to dif-
ferent covariate values, has mainly been incorporated
by means of classification models [30, 1]; generalized
inference (in particular along the lines of Walley’s gen-
eralized Bayes’s rule [21]) and decision theory (see the

1Very rare exceptions can be found in the robust Bayesian
context, including: [6, 12]



survey in [20]) have almost exclusively confined them-
selves to the case of homogenous populations (i.i.d.
case) or two-sample models (like [22, Section 5] and
[8]).

Sound regression models would make imprecise prob-
abilities quite attractive for applied scientists. As a
step towards this ambitious aim we show that the ap-
proach of Quaeghebeur and de Cooman [16], who de-
veloped a concept of imprecise conjugated priors that
nicely generalizes the widely applied imprecise Dirich-
let model (IDM) [22, 2, 3], can be extended in an ap-
propriate way.2 Indeed, at least two different ways
are successful. We briefly comment on the first one,
which directly adopts to regression analysis Quaeghe-
beur and de Cooman’s [16] original way to proceed,
and investigate in more detail the second one, which is
in straight line with the standard model for regression
analysis (cf., e.g., [13].) For that purpose we interpret
[16]’s approach, beyond its direct application in their
work, as a general method for powerfully introduc-
ing imprecision into a huge class of Bayesian models,
which we will call, for sake of brevity, luck-models in
this paper, and demonstrate that the standard model
for Bayesian regression analysis indeed fits into this
framework.

In more detail, the paper is organized as fol-
lows: In Section 2 we collect some basic ingredients
from Bayesian analysis, identify the special case of
Bayesian analysis (luck-models) that underlies our
basic argument, and then turn to the method for in-
troducing imprecision into conjugate priors [16]. Sec-
tion 3.1 firstly recalls classical3 Bayesian regression
analysis and puts it into the framework of luck-
models. After having utilized [16] as a powerful
method to extend luck-models to imprecise proba-
bilities, we arrive at a general framework for regres-
sion analysis under sets of conjugate priors. We then
focus consideration on a special case with two regres-
sors, where some complex constraints underlying the
general situation can be made easily tractable. The
results are illustrated in Section 4 by simulated data
and in Section 5 by a small data set from the air-
gene study [15]. We conclude with some remarks
on modifications and extensions, including the possi-
bility to incorporate modelling of prior-data conflict,
which was explicitly named by Walley as one of the
main arguments for imprecise probabilities [21, p. 6],
but which cannot be captured by the original method
along the lines of [16].

2A different approach to generalize regression analysis has
been proposed quite recently [28, Chapter 13] in the framework
of the symmetric theory based on logical probability ([28], see
also [27]).

3We use the term ‘classical’ for all concepts relying on precise
probabilities / linear previsions.

2 Bayes Inference and LUCK-models

2.1 Classical Bayesian Inference and

LUCK-models

As a preparation, some basic notions from the classi-
cal Bayesian approach will be recalled: Central is the
assumption that the knowledge on a (possibly mul-
tivariate) parameter ϑ can be perfectly expressed by
a single precise probability distribution on ϑ. So, in-
ference from a (possibly multidimensional) sample w,
the distribution of which is described by a density or
probability function f(w |ϑ) (called likelihood in this
context), consists in updating the so-called prior p(ϑ)
to the so-called posterior p(ϑ |w) via Bayes’s rule

p(ϑ |w) ∝ f(w |ϑ) · p(ϑ) . (2)

For a Bayesian, the prior describes the knowledge be-
fore having seen the sample, and the posterior sub-
sumes the complete knowledge on ϑ after having seen
the sample, and therefore it underlies all inferences
drawn from the data.

For the intended application presented later on, it is
quite convenient to distinguish certain standard situa-
tions (called models with ‘Linearly Updated Conjugate
prior Knowledge’ (luck) here) of Bayesian updating
with classical probabilities, where prior and posterior
fit nicely together in the sense that

i) they belong to the same class of parametric dis-
tributions, a case where they are called conjugate,
and, in addition,

ii) the updating of one parameter (y(0) below) of the
prior is linear.4

More precisely, we introduce the following definition:

Definition 1 Consider classical Bayesian inference
on a parameter ϑ based on a sample w as described
in (2), and let the prior p(ϑ) be characterized by the
(vectorial) parameter ϑ(0). The pair

(

p(ϑ), p(ϑ |w)
)

is
said to constitute a luck-model of size q in the nat-
ural parameter ψ with prior parameters n(0) ∈ IR+

and y(0) and sample statistic τ(w), iff there exist
q ∈ IN as well as transformations of ϑ into ψ and
b(ψ) and of ϑ(0) into n(0) and y(0), such that p(ϑ)
and p(ϑ |w) can be rewritten in the following way:5

p(ϑ) ∝ exp
{

n(0)
[

〈ψ, y(0)〉 − b(ψ)
]}

(3)

and

p(ϑ |w) ∝ exp
{

n(1)
[

〈ψ, y(1)〉 − b(ψ)
]}

(4)

with

n(1) = n(0) + q and y(1) =
n(0)y(0) + τ(w)

n(0) + q
. (5)

4The second parameter n(0) possesses a vivid interpretation
as “prior strength”, which will become clearer in Section 2.2.

5〈a, b〉 denotes the scalar product of a and b.



2.2 Imprecise Priors for Inference in

LUCK-models

Several powerful approaches have been proposed to
overcome the “dogma of ideal precision” (Walley) un-
derlying classical Bayesian inference (cf., in particu-
lar, [14, 7, 5, 16]; see also Section 6). We rely in the
following on the work of Quaeghebeur and de Cooman
[16], who consider, by utilizing a general result (see,
e.g., [4, Proposition 5.4]), certain luck-models for
Bayesian inference based on independently and iden-
tically distributed (i.i.d.) observations from regular,
linear canonical exponential families [4, p. 202 and
p. 272f]. The central idea of [16] is that the seemingly
strange parameterization in terms of y(0) and n(0) in
(3) and (4) is perfectly suitable to be generalized to
credal sets of priors. The crucial point is that these
parameters are updated linearly, thus allowing for an
easily tractable imprecise calculus: When sets of pri-
ors are defined via sets of parameters, and these sets
of parameters are defined by lower and upper bounds,
the lower and upper bounds of the sets of posterior
parameters can be obtained directly from (5). So, just
as in the popular IDM, which is contained as the spe-
cial case of a multinomial sampling model with con-
jugated Dirichlet priors, minimization and maximiza-
tion problems on the set of posteriors can be reduced
to minimization and maximization problems on the
set of priors in the case when the parameter y(1) (or
a linear function of it) is the quantity of interest.

It shall be noted explicitly that this line of argumen-
tation simply uses the linearity of the updating in
the parameters, not the concrete derivation of the
conjugate prior. Consequently, Quaeghebeur and de
Cooman’s technique to construct imprecise conjugate
priors can be applied to any luck-model.

In more detail, the following technique will be applied:
Given the situation in Definition 1, let y(0) vary in
some set Y(0) ⊂ Y, where the parameter space Y is
taken as the convex hull (without the boundary) of
the range of τ(wi), and take as the imprecise prior
the credal set consisting of all convex mixtures of all
p(ϑ) from (3) created by varying y(0) in Y(0). After
having evaluated the sample w, the posterior credal
set arising from applying Bayes’s rule element by el-
ement has to be determined. For its calculation it is
sufficient to consider the extreme points, and so it is
obtained as the set of all convex mixtures of posteri-
ors p(ϑ |w) arising from (4) by varying y(1) in Y(1),
where

Y(1) =

{

n(0)y(0) + τ(w)

n(0) + n

∣

∣

∣

∣

y(0) ∈ Y(0)

}

⊂ Y . (6)

Y(1) can actually be seen as a shifted and rescaled
version of Y(0):

Y(1) =
n(0)

n(0)+ n
· Y(0)+

n

n(0)+ n
·

1

n

n
∑

i=1

τ(wi) , (7)

which immediately suggests a vivid interpretation of
n(0) as “prior strength” or as “pseudocounts”, as it
plays the same role for the prior as n for the sample.
So, n(0) can be interpreted as the size of an imaginary
sample that corresponds to the trust on the prior in-
formation in the same way as the sample size of a real
sample corresponds to the trust in conclusions based
on that sample.

For posterior inference, lower and upper posterior ex-
pectations are derived as the infimum and the supre-
mum over all classical expectations with y(1) varying
in Y(1). The resulting relations between n(0), prior
and posterior bounds are in essence the same as in
the IDM:6 In particular, for n(0) = n, the width of
the posterior expectation interval is half the width of
the prior interval.

The choice of Y(0) should reflect the prior informa-
tion on the parameters. When there is very little or
no information at all available, Y(0) should be chosen
as large as possible, that is, as the set of all possi-
ble parameter values, Y(0) = Y. However, in most
cases this would lead to the posterior set Y(1) being
vacuous as well, whatever the number of observations

used for updating; for any y
(0)
j = ∞, it holds that

y
(1)
j = ∞ as well. To avoid this, Y(0) must be bounded

by (element-wise) finite lower and upper boundaries.7

This need to bound Y(0) is not perceived as a severe
restriction in practical application; typically, as in our
example in Section 5, the very rough magnitude of
reasonable parameter values is known, and there ex-
ist some trivial bounds.

3 Towards Imprecise Normal

Regression Models

3.1 The Linear Regression Model, and its

Classical Bayesian Treatment

In handling the linear regression model it is helpful to
arrange the components in column vectors, denoted
without index, i.e., z = (z1, . . . , zk)T, and to collect all
regressors column by column in the so-called design
matrix X. Equation (1) then reads as

z = Xβ + ε , X ∈ IRk×p, β ∈ IRp, z ∈ IRk, ε ∈ IRk ;

ε is assumed to have expected value 0 and covariance
matrix σ2I, i.e. V(εi) = σ2, the variance of εi does

6n(0) corresponds to the parameter s in the IDM.
7For the IDM, this is not necessary, as the parameter space

Y itself is already bounded, being the unit simplex.



not vary among the units (homoscedasticity) and all
units are uncorrelated.

There are several methods to construct estimators β̂
for the regression parameter β. With the least squares
method, β̂ is chosen to minimize the squared differ-
ence between the observed response values z and the
values estimated by Xβ̂, yielding the well-known least
squares (LS) estimator

β̂LS = (XTX)−1XTz . (8)

Other estimation techniques additionally assume that
the error term ε is normally distributed. Then, as the
design matrix X is considered to be non-stochastic,8

also z is normally distributed,

z ∼ Nk(Xβ, σ2I) . (9)

This point of view is very helpful for several types of
generalizations.9 Reinterpreting (9) as a likelihood on
β and σ2 and applying the maximum likelihood (ML)
principle again leads to the estimator from (8). In
the Bayesian context appropriate priors related to the
parameters and the likelihood (9) have to be found.
Several choices for the prior seem attractive,10 even
different luck-models can be produced: In the light
of the intended generalization below one natural pos-
sibility would be to follow the path of Quaeghebeur
and de Cooman closely, by constructing a conjugate
prior along the general construction method for luck-
models (see, e.g., [4, Proposition 5.4]), also mentioned
at the beginning of Section 2.2. For the case of known
(or in advance estimated) σ2 considered throughout
the paper, one obtains by this procedure

p(β) ∝ exp
{

n(0)
[

〈β, y(0)〉 − b(β)
]}

,

where b(β) = 1
2σ2

∑k
i=1

(

∑p
j=1 xijβj

)2

. This prior

can be shown to be a normal distribution on β, with
its parameters being some transformations of n(0) and
y(0) depending on X.11 It was maybe this strange
dependency of the prior on the covariates X that re-
sulted in this prior rarely being used for estimating
regression parameters in the Bayesian framework.

8If X is stochastic, then it is common, and legitimate, prac-
tice (cf., e.g., [9]) to perform the analysis conditional on X,
hence (9) is replaced by z | X ∼ Nk(Xβ, σ2

I).
9It makes also clear how the heterogeneity in the data is

modelled: Each response zi is assumed to be normally distrib-
uted, but the corresponding mean value depends on the individ-
ual characteristics (regressors) xi1, . . . , xip and the effect size
(expressed by β).

10So-called ‘objective Bayesian estimation’ of β, using the
‘non-informative’ prior p(β) ∝ const. leads to the same results
as LS and ML when the expected or the maximum value of the
posterior is used as the estimate. Therefore, when the interval-
valued estimations of β proposed in this work are compared
with the LS estimate, they are implicity compared to the ML
and the objective Bayesian estimates as well.

11See [25] for more details on this model.

Instead, the commonly used approach specifies

β ∼ Np

(

β(0), σ2Σ(0)
)

(10)

as the conjugate prior.12 Advocated, e.g., by [13], it
has become the standard, why we call the model based
on this prior normal regression model throughout the
paper. Applying Bayes’s rule (2) to (10) yields

β | z ∼ Np

(

β(1), σ2Σ(1)
)

, (11)

where the updated parameters β(1) and Σ(1) are ob-
tained as

β(1) =
(

XTX + Λ(0)
)

−1(

XTz + Λ(0)β(0)
)

(12)

Σ(1) =
(

XTX + Λ(0)
)

−1

, (13)

Λ(0) = Σ(0)−1
being the so-called precision matrix.13

3.2 The Normal Regression Model as a

LUCK-model

Now the argument that the extension proposed in
[16] is neither limited to the i.i.d. case of homogenous
populations nor to the special construction of luck-
models considered there becomes fruitful: The stan-
dard Bayesian treatment of regression models based
on the prior (10) can be shown to fit into the frame-
work of luck-models, a fact that luckily immedi-
ately enables an appropriate generalization to impre-
cise models.

Theorem 2 Consider the normal regression model
described by the prior p(β) from (10) with prior para-
meters β(0) and Σ(0), and the posterior p(β | z) from
(11) with (12) and (13).

Fixing a value n(0),
(

p(β), p(β | z)
)

constitutes a
luck-model of size 1 with prior parameters

y(0) =
1

n(0)

(

Λ(0)

Λ(0)β(0)

)

=:

(

y
(0)
a

y
(0)
b

)

(14)

and n(0) and sample statistic

τ(z) = τ(X, z) =

(

XTX

XTz

)

=:

(

τa(X, z)
τb(X, z)

)

. (15)

12Throughout the paper we denote prior parameters by the
superscript (0) and, if appropriate, corresponding parameters
of the posterior by (1). Here, the mean vector β(0) ∈ IRp and
the (positive definite) covariance matrix Σ

(0) ∈ IRp×p are the
prior parameters defining the concrete distribution on β.

13If, in addition, σ2 is considered unknown, too, the com-
monly used prior distribution conjugate to the likelihood in (9)
is the so-called normal-inverse gamma distribution (e.g., [13,
§9.4]). Unfortunately, this model will turn out to be not gen-
eralizable in the same way as it is done here for the normal
regression model (cf., [23, Appendix], and also briefly in [25]).
A first way out would be to estimate σ2 in advance, and then
to apply the normal regression model with the estimated value
of σ2, a strategy that we followed in our examples in Sections 4
and 5.



Proof: The proof is given in [24].

Knowing now the form of y(0), we can finally start
with the imprecise probability calculus: By varying
y(0) from (14) in a set Y(0) ⊂ Y, the set of priors is
generated. Since T , the range of the sample statis-
tic, is the product of the set of positive semidefinite
(p × p) matrices and arbitrary vectors of dimension
p, Y is taken as the convex hull of T without the

boundary, thus y
(0)
a having to be a positive definite

(p × p) matrix. On the one hand, Y(0) is chosen in
order to reflect prior knowledge on β; on the other
hand, this set must, as mentioned above at the end of
Section 2.2, be bounded in order to avoid the possi-
bility of vacuous posterior inference. In the case of a
multidimensional parameter space Y, [16] suggest to
relate the element-wise bounds to each other. Their
suggestion for the multivariate normal distribution is
adopted here, leading to the following constraints of
positive definiteness (p.d.):

1

n(0)
Λ(0) p.d., and (16)

1

n(0)

(

Λ(0) −
1

n(0)
Λ(0)β(0)β(0)TΛ(0)

)

p.d. (17)

If the normal regression model is to be applied as an
imprecise probability model, we have to proceed as
follows:

1. Prior knowledge on β must be expressed as a set
of values of β(0) and Λ(0).

2. This set must be “translated” into a set of values
of y(0) in a way such that the resulting set Y(0)

satisfies the constraints (16) and (17).

3. Then each y(0) in Y(0) is linearly updated by (5)
to y(1).

4. The obtained set Y(1) must be “retranslated”
into an interpretable set of values of β(1) and Λ(1).

The sets can be defined by lower and upper bounds
for each element, e.g., for β(0) by

β
(0)
j ∈

[

β(0)

j
, β

(0)

j

]

j = 1, . . . , p .

The bounds for the components β
(0)
j of β(0) can be

chosen independently of each other, as any vector of
reals forms an admissible regression parameter. For
Λ(0) the situation is more complex, because all the

element-wise bounds λ
(0)
ij and λ

(0)

ij have to be chosen
such that for any combination of values between the
bounds the resulting Λ(0) is positive definite. Choos-
ing bounds for the precision matrix Λ(0) instead of
bounds for Σ(0) facilitates the “translation” issues in
application to a great extent.14

14Defining the bounds for Λ
(0) is in fact not as complicated

as it might seem as the elements are interpretable in a quite

In the “translation” step the bounds on β(0) and Λ(0)

must be turned into bounds on y(0) that have to sat-

isfy conditions (16) and (17). For y
(0)
a , this is simple,

as multiplying by 1
n(0) does not change positive defi-

niteness. But deriving bounds on y
(0)
b is more difficult,

as it holds that

y(0)
bi

= min
β(0),Λ(0)

1

n(0)

p
∑

j=1

λ
(0)
ij β

(0)
j

y
(0)
bi = max

β(0),Λ(0)

1

n(0)

p
∑

j=1

λ
(0)
ij β

(0)
j .

The minima and maxima are to be taken over a joint
set of β(0) and Λ(0) that satisfies the constraint (17).

Note that for obtaining the bounds for a single y
(0)
bi

the bounds of all elements of β(0) and of the i-th row
on Λ(0) have to be taken into account on the one hand,
but on the other hand maximization and minimiza-
tion must be executed only on combinations of all
values between these bounds that are admissible ac-
cording to (17). The obstacle is that (16) and (17) are
nonlinear constraints (polynomial of degree p when
checking wether all eigenvalues are positive), so that
y(0) and y(0) can hardly be calculated analytically.
The satisfaction of the highly complex constraint (17)
can be taken into account when “translating” to Y(0)

or already when defining the sets for β(0) and Λ(0).

3.3 The Case of Two Regressors

In order to be able to give vividly interpretable ana-
lytical expressions, we now focus attention on the case
of two regressors. Here, (16) turns out to demand only

that, for any given λ
(0)
11 and λ

(0)
22 , λ

(0)
12 must be chosen

such that it leads to a correct non-deterministic cor-
relation ρ. Still, with the five parameters β

(0)
1 , β

(0)
2 ,

λ
(0)
11 , λ

(0)
12 , λ

(0)
22 in this model, (17) turns out be quite

complex, leading to an inequality in six parameters
(the above five plus n(0)) that does not seem to pro-
duce an easily interpretable condition on their choice.

Therefore a further simplification was made by as-

suming λ
(0)
11 = λ

(0)
22 =: a and λ

(0)
12 = 0. Then, (16) is

trivially satisfied and (17) requires only

a
(

β
(0)
1

2
+ β

(0)
2

2)

< n(0) . (18)

If the bounds for β
(0)
1 , β

(0)
2 and a are chosen such

that all possible combinations of values satisfy this

straightforward way (and maybe even closer to intuition than
the elements of Σ

(0)): According to [17] (who is referring
to [29, p. 142ff]), it holds that λii = [V(βi |βri)]

−1, where

βri is vector β without element i, and λij = −(λiiλjj)
1
2 ·

ρ(βi, βj |βr{i,j}), with the second factor being the correlation
of βi and βj conditioned on the linear effect of β

r{i,j}.



constraint, minimization and maximization can be
performed for every parameter independently. Now,
most but not all parameters of the posterior can be
specified analytically, and the results to be sketched
here15 will turn out to be highly plausible:

We consider the following prior:

β ∼ N2

(

β(0),
σ2

a
I

)

,

with a ∈ A := [a, a] , a > 0 and

β(0) =

(

β
(0)
1

β
(0)
2

)

∈ B :=

(

B1 =
[

b1, b1
]

B2 =
[

b2, b2
]

)

.

In the description we jump directly to the “retrans-
lated” results. Denoting the elements of the updated

covariance matrix Σ(1) by σ
(1)
ij , i, j = 1, 2, we obtain

for any a ∈ A by abbreviating

D =
(

∑k
l=1 x

2
l1 + a

)(

∑k
l=1 x

2
l2 + a

)

−
(

∑k
l=1 xl1xl2

)2

:

σ
(1)
11 = D−1 ·

(

∑k
l=1 x

2
l2 + a

)

σ
(1)
22 = D−1 ·

(

∑k
l=1 x

2
l1 + a

)

σ
(1)
12 = D−1 ·

(

−
∑k

l=1 xl1xl2

)

.

Their basic properties are summarized in

Remark 3

i) As ∂
∂a
σ

(1)
11 and ∂

∂a
σ

(1)
22 are always negative, the

higher the prior precision a, the lower the poste-
rior variance of β1 and β2. The trend of the co-

variance σ
(1)
12 depends on the sign of

∑k
l=1 xl1xl2.

ii) lima→0 σ
2Σ(1) = σ2(XTX)−1 = V(β̂LS). There-

fore, for a > 0 and monotonicity, it holds that
the posterior variance of the regression parame-
ters in the imprecise normal regression model is
always smaller than the one of the LS estimator.

iii) lima→∞ σ2Σ(1) = 0: An infinitely high prior pre-
cision causes naturally an infinitely small poste-
rior variance.

Most of the results on β(1) are reported in terms

of β
(1)
1 only; by noting the symmetry underlying β1

and β2, analogous results for β
(1)
2 are immediately

achieved mutatis mutandis. We obtain

β
(1)
1 =

1

D

{(

k
∑

l=1

x2
l2 + a

)[

a · b1 +

k
∑

l=1

xl1zl

]

−

(

k
∑

l=1

xl1xl2

)[

a · b2 +
k
∑

l=1

xl2zl

]}

.

15See [23, Section 4.3] for a detailed derivation.

As these expressions are linear in b1 and b2 and op-
timizations in B can be taken independently of a, it
holds that

β
(1)
1 →max for b1→b1 and

{

b2→b2
∑k

l=1 xl1xl2 < 0

b2→b2
∑k

l=1 xl1xl2 > 0

β
(1)
1 →min for b1→b1 and

{

b2→b2
∑k

l=1 xl1xl2 < 0

b2→b2
∑k

l=1 xl1xl2 > 0
.

Unfortunately, calculating ∂
∂a
β

(1)
1 yields neither

monotonicity nor an easily interpretable condition so
that the bounds for β(1) can not be given analyti-
cally. But still asymptotic results can be obtained,
which are summarized in

Remark 4

i) For any bj ∈Bj , j=1, 2 : lima→∞ β(1) = (b1, b2)
T,

and so, for very high values of a implying a very
high prior precision, each b ∈ B is updated to a
value very near to itself; very high trust in the
given prior values in B means sticking on the
prior values and results in learning from the sam-
ple only to a very small extent.

ii) On the other hand, lima→0 β
(1) = β̂LS: Very low

trust in the prior values in B results in relying
almost only on the information given by the sam-
ple, and so, any given b ∈ B will be updated to a
value close to the least squares estimate β̂LS.

On a first view, it is disturbing that none of the above
formulae for deriving posterior parameters depends
on n(0), the second prior parameter. The reason for
this is that in proving Theorem 2, the parameter n(0)

had to be introduced ‘artificially’ to match Relations
(3) to (5) for the luck-model. When ‘retranslating’
y(1) into β(1) and Σ(1), the parameter n(1) is elimi-
nated immediately, and, as a consequence, the depen-
dency on n(0) seems to vanish. In fact, the posterior
bounds do actually depend on n(0) via Equation (18).
Through this restriction on the prior bounds, the
range of posterior bounds is constrained. When using
the imprecise normal regression model, the bounds for
B are quite easy to derive; a possible strategy is then
to set a value for n(0) according to the interpretation
as pseudocounts or sample size equivalent, and then
to determine a from (18).

4 Results Based on Simulated Data

To illustrate the performance of the two-parameter
model developed in Section 3.3, three data sets were
simulated, each with 20 observations, but with a dif-
ferent arrangement of parameters. For data set 1,
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Figure 1: Exemplary results for two-regressor models based on three simulated data sets with 20 observations
each.

realizations x1 and x2 of two independent standard
normal variables were generated as regressors; the er-
ror ε was simulated with variance σ2 = 0.5. Then
the response z was calculated by choosing β1 = 1.5,
β2 = 1. Data set 2 was generated analogously but
with β1 = 0.5, β2 = 0.1 and σ2 = 3. In data
set 3, multi-collinearity was modeled by simulating x1

and x2 by a two-dimensional normal with correlation
ρ = 0.9, taking β1 = β2 = 0.85 and σ2 = 1 for calcu-
lating z. The regressors were standardized and z was
centered with the observed moments in order to make
the estimation of an additional intercept unnecessary.
Exemplary results are shown in Figure 1, where the
graphs from the left to the right show results for data
set 1, 2 and 3, respectively.

The upper graphs show the estimation of β1 for each
data set. In each of these graphs, the thick short-
dashed line represents the actual value of β1, the thin-
ner dashed line the LS estimate, and dot-dashed lines
indicate the bounds of the 0.95% confidence interval
for the LS estimate. The ‘horizontal’ solid lines repre-

sent the estimated lower and upper bound for β
(1)
1 as

a function of a, and the vertical lines mark the chosen
values of a and a. The lower graphs compare the clas-
sical ellipsoid confidence region (dash-dotted line) for
the LS estimate of β1 and β2 (indicated by the small

circle) with the interval-valued estimate (thick short-
dashed line) and a 0.95-credibility region for it (thick
solid line). The actual value of (β1, β2) is indicated
by the big cross.

For the “large β, small σ2” data set 1, relatively high
values of a were chosen ‘data-guided’ by taking the
estimated variance of the LS estimator to calculate a
central value of A. Because standardized regression
parameters are to be estimated, their absolute value
is interpretable, and the choice of B1 = B2 = [−2 ; 2]
seems reasonable, as higher values are very rare in ap-
plication. Note that the course of the ‘horizontal’ solid
lines illustrates clearly the statement in Remark 4:
The prior assignment results in a quite broad poste-

rior interval for β
(1)
1 (lowest and highest intersection

of vertical with ‘horizontal’ solid lines), as the induced
value of n(0) = 210 is quite high with respect to the
sample size of 20. Consequently, the interval-valued
estimate displayed in the lower graph covers a wide
area compared to the frequentist confidence region.
So does the 0.95-credibility region, which was approx-
imated by the union of 0.95-credibility regions for all
combinations of β1 and β2 in the interval-valued es-
timate. Because the maximum posterior variance is
lower than the variance for the LS estimate (as men-
tioned in Remark 3), the distance between the bounds
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Figure 2: Illustration of asymptotic behavior of
interval-valued regression parameter estimates.

of the interval-valued estimate and its credibility re-
gion is smaller than the distance between the LS es-
timate and its confidence region.

In the “small β, large σ2” situation of data set 2,
a was chosen such that n(0) = 20, implying that the
influence of prior and data information are evenly bal-
anced. a was chosen ad hoc as 0.5 · a to illustrate the
effect of values of a > 0 on the variance of β(1). (Here,
the choice of a has no influence on the interval-valued
estimates for β(1).) Now, as smaller values of a result
in shorter intervals for β(1) (which can be seen clearly
from each of the top graphs), the resulting interval-
valued estimate for β1 is less wide, being now shorter
than the confidence interval that is quite wide due to
the high value of σ2. This can be seen also in the lower
graph, where the confidence region and the credibility
region differ to a much lesser extent than in the lower
left graph.

For the analysis of data set 3 with a “moderate β1

and β2, moderate σ2” arrangement, A was chosen by
using values for n(0) that are commonly suggested for
s in the IDM to represent prior ignorance. So a was
derived from n(0) = 1, and a from n(0) = 2. To-
gether with, as a precaution, even wider prior inter-
vals B1 = B2 = [−3 ; 3], this still yields a very short
posterior interval for β1, as can be seen in the top
right graph. Note the exceedingly wide confidence
interval for the LS estimate, as this shows the trou-
blesome property of the LS estimate in the case of
multi-collinearity: the high resulting variance of esti-
mates can, in many cases, even cause the ‘observed’
estimates having the wrong sign. In the lower right
graph, both the confidence as well as the credibility re-
gion show the effect of multi-collinearity through their
diagonal shape: estimates for β1 and β2 are negatively
correlated because both x1 and x2 contain similar in-
formation. Still, the interval-valued estimate covers a

quite small area around the LS estimate, illustrating
again the results achieved for the limiting case a→ 0.

In Figure 2, asymptotic behavior of the interval-
valued estimation for β1 is illustrated using the sit-
uation of data set 1 and choosing n(0) = 100. With
increasing sample size k = dim(z), the range of the in-
terval, marked as a gray colored vertical line for each
value of k, is becoming shorter and shorter, tightening
around the LS estimate, represented by the thin solid
line, which approaches the actual value of β1, marked
by the thick short-dashed horizontal line. The dot-
dashed lines indicate again the bounds of the 0.95%
confidence interval for the LS estimate.

5 The AIRGENE Study

In addition, the model was applied to a data set that is
a part of the data collected for the airgene study [15],
an EU financed panel study which was conducted to
assess the association between air pollutants and in-
flammation markers in the high-risk group of myocar-
dial infarction survivors. As epidemiological studies
show that inflammation markers are associated with
the BMI (Body-Mass-Index) and the age of subjects
[19], their influence on inflammation marker levels
must be taken into account when estimating the ef-
fect of air pollutants. To this end, estimations for the
parameters of these interfering factors (confounders)
are derived in a separate regression model and then
are used – in the main analysis not to be presented
here – to adjust the main model that estimates the
influence of air pollutant variables.

Here, the 200 cases collected by KORA [11] in Augs-
burg, which was one of the six study centers, are an-
alyzed. The reduced data set consists of the variables
bmi and age as regressors and log(fib) as the re-
sponse variable, being the log of the concentration
of the inflammation marker fibrinogen, averaged over
the several blood samples collected for each subject
during the study period.

Just as for the simulated data sets, the response was
centered and the regressors standardized to make an
estimation of an intercept unnecessary. Prior bounds
for βbmi and βage were derived each in a straightfor-
ward way by considering the lowest and highest pos-
sible values (e.g. for age, these were, according to
the inclusion criterion of the study, 35 and 80 re-
spectively) that were transformed on the standard-
ized scale and then linked to the range of the cen-
tered response.When choosing A in the same way as
for data set 3 to model weak prior knowledge, the
retransformed interval-valued estimates can be com-
bined to the following regression equation:
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Figure 3: Exemplary results for the airgene data.

log(fib)i = agei · [0.00558, 0.00915]

+ bmii · [0.00985, 0.01545]

+ [0.180, 0.562] + εi

The fact that the 0.95-credibility region displayed in
Figure 3 does not cover the origin is a strong hint
that, also when considering complex uncertainty in
the prior, age and bmi have a noteworthy effect on
the fibrinogen level. So, the established evidence on
this association can be confirmed and set on a more
stable base with respect to the model assumptions.

6 Concluding Remarks

We have suggested a first approach to linear regres-
sion with imprecise conjugate priors. Of course, the
approach needs further investigation, including a com-
parison to modifications and alternative ways to pro-
ceed. This applies in particular to the approach
briefly described at the beginning of Section 3.1 where
an (imprecise) luck-model is constructed directly
along the lines of [16].

Further research should also clarify whether other
powerful models generalizing classical Bayesian infer-
ence in the i.i.d. case (like [14, 7, 5]) can also be ex-
tended to linear regression models by similar argu-
ments. The results should also be compared with the
approach currently being developed by [28, Chapter
13], whose so-called symmetric theory based on logi-
cal probabilities ([28], see also [27]) allows the deriva-
tion of probability distributions on parameters with-
out prior modelling.

A possible drawback of the approach introduced by
[16], which consequently is shared by the models de-
veloped here, is that, in some sense, it does not en-
tirely utilize the expressive power of imprecise prob-
abilities: As n(0) is fixed (like s in the IDM), the

behavior of the model – outside the situation of prior
ignorance – is not optimal in the case of prior-data
conflict in the sense of [21, p. 6]. To see this, note that,
if in the situation of Section 2.2 y(0) varies between
y(0) and y(0), then the difference between the updated

bounds y(1) and y(1) is given by
n(0)(y(0)

−y(0))
n(0)+n

. So
the imprecision decreases by the same amount for any
sample of size n, irrespectively whether or not there
is substantial discrepancy between prior assignments
and the sample. A natural attempt to find a way
out would be to vary n(0) in addition. This idea still
has to be explored, but the model developed in [21,
Ch. 5.4], where such effects are described for an IDM
with two categories, may give some hint.

From the applied point of view it is quite important
to extend the modelling to generalized linear models,
which in particular allow regression analysis for non-
metric responses. Here the adaption of auxiliary vari-
able models, considered by [10] in a simulation-based
classical Bayesian setting, seems to be very promising.
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