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Abstract

There exist many practical representations of prob-
ability families that make them easier to handle.
Among them are random sets, possibility distribu-
tions, probability intervals, Ferson’s p-boxes and Neu-
maier’s clouds. Both for theoretical and practical con-
siderations, it is important to know whether one rep-
resentation has the same expressive power than other
ones, or can be approximated by other ones. In this
paper, we mainly study the relationships between the
two latter representations and the three other ones.

Keywords. Random Sets, possibility distributions,
probability intervals, p-boxes, clouds.

1 Introduction

There are many representations of uncertainty.
The theory of imprecise probabilities (including
lower/upper previsions) [27] is the most general
framework. It formally encompasses all the repre-
sentations proposed by other uncertainty theories, re-
gardless of their possible different interpretations.

The more general the theory, the more expressive it
can be, and, usually, the more expensive it is from
a computational standpoint. Simpler (but less flexi-
ble) representations can be useful if judged sufficiently
expressive. They are mathematically and computa-
tionally easier to handle, and using them can greatly
increase efficiency in applications.

Among these simpler representations are random
sets [7], possibility distributions [28], probability in-
tervals [2], p-boxes [15] and, more recently, clouds [21,
22]. With such a diversity of simplified representa-
tions, it is then natural to compare them from the
standpoint of their expressive power. Building formal
links between such representations also facilitates a
unified handling of uncertainty, especially in propa-
gation techniques exploiting uncertain data modeled
by means of such representations. This is the pur-

pose of the present study. It extends some results by
Baudrit and Dubois [1] concerning the relationships
between p-boxes and possibility measures.

The paper is structured as follows: the first section
briefly recalls the formalism of random sets, possibil-
ity distributions and probability intervals, as well as
some existing results. Section 3 then focuses on p-
boxes, first generalizing the notion of p-boxes to arbi-
trary finite spaces before studying the relationships of
these generalized p-boxes with the three former rep-
resentations. Finally, section 4 studies the relation-
ships between clouds and the preceding representa-
tions. For the reader convenience, longer proofs are
put in the appendix.

2 Preliminaries

In this paper, we consider that uncertainty is modeled
by a family P of probability assignments, defined over
a finite referential X = {x1, . . . , xn}. We also restrict
ourselves to families that can be represented by their
lower and upper probability bounds, defined as fol-
lows:

P (A) = inf
P∈P

P (A) and P (A) = sup
P∈P

P (A)

Let PP,P = {P |∀A ⊆ X, P (A) ≤ P (A) ≤ P (A)}. In
general, we have P ⊂ PP,P , since PP,P can be seen
as a projection of P on events. Although they are
already restrictions from more general cases, dealing
with families PP,P often remains difficult.

2.1 Random Sets

Formally, a random set [20] is a mapping Γ from a
probability space to the power set ℘(X) of another
space X, also called a multi-valued mapping. This
mapping induces lower and upper probabilities on
X [7]. In the continuous case, the probability space
is often [0, 1] equipped with Lebesgue measure, and Γ
is a point-to-interval mapping.



In the finite case, these lower and upper probabili-
ties are respectively called belief and plausibility mea-
sures, and it can be shown that the belief measure is a
∞-monotone capacity [4]. An alternative (and useful)
representation of the random set consists of a normal-
ized assignment of positive masses m over the power
set ℘(X) s.t.

∑
E⊆X m(E) = 1 and m(∅) = 0 [25].

A set E that receives strictly positive mass is said to
be focal. Belief and plausibility functions are then
defined as follows:

Bel(A)=
P

E,E⊆A m(E)

Pl(A)=1−Bel(Ac)=
P

E,E∩A6=∅m(E).

The set

PBel = {P |∀A ⊆ X,Bel(A) ≤ P (A) ≤ Pl(A)}

is the probability family induced by the belief mea-
sure.

Although 2|X| values are still needed to fully specify a
general random set, the fact that they can be seen as
probability assignments over subsets of X allows for
simulation by means of some sampling process.

2.2 Possibility distributions

A possibility distribution π [12] is a mapping from
X to the unit interval such that π(x) = 1 for some
x ∈ X. Formally, a possibility distribution is the
membership function of a fuzzy set. Several set-
functions can be defined from a distribution π [11]:

• Π(A) = supx∈A π(x) (possibility measures);

• N(A) = 1−Π(Ac) (necessity measures);

• ∆(A) = infx∈A π(x) (sufficiency measures).

Possibility degrees express the extent to which an
event is plausible, i.e., consistent with a possible state
of the world, necessity degrees express the certainty of
events and sufficiency (also called guaranteed possibil-
ity) measures express the extent to which all states of
the world where A occurs are plausible. They apply
to so-called guaranteed possibility distributions [11]
generally denoted by δ.

A possibility degree can be viewed as an upper bound
of a probability degree [13]. Let

Pπ = {P,∀A ⊆ X,N(A) ≤ P (A) ≤ Π(A)}

be the set of probability measures encoded by a pos-
sibility distribution π. A possibility distribution is
also equivalent to a random set whose realizations are
nested.

From a practical standpoint, possibility distributions
are the simplest representation of imprecise probabil-
ities (as for precise probabilities, only |X| values are
needed to specify them). Another important point is
their interpretation in term of collection of confidence
intervals [10], which facilitates their elicitation and
makes them natural candidate for vague probability
assessments (see [5]).

2.3 Probability intervals

Probability intervals are defined as lower and up-
per probability bounds restricted to singletons xi.
They can be seen as a collection of intervals
L = {[li, ui], i = 1, . . . , n} defining a probability fam-
ily:

PL = {P |li ≤ p(xi) ≤ ui ∀xi ∈ X}.

Such families have been extensively studied in [2] by
De Campos et al.

In this paper, we consider non-empty families (i.e.
PL 6= ∅) that are reachable (i.e. each lower or upper
bound on singletons can be reached by at least one
probability assignment of the family PL). Conditions
of non-emptiness and reachability respectively corre-
spond to avoiding sure loss and achieving coherence
in Walley’s behavioural theory.

Given intervals L, lower and upper probabilities
P (A), P (A) are calculated by the following expres-
sions

P (A) = max(
∑

xi∈A
li, 1−

∑
xi /∈A

ui)

P (A) = min(
∑

xi∈A
ui, 1−

∑
xi /∈A

li) (1)

De Campos et al. have shown that these bounds are
Choquet capacities of order 2 ( P is a convex capac-
ity).

The problem of approximating PL by a random set
has been treated in [17] and [8]. While in [17], Lem-
mer and Kyburg find a random set m1 that is an
inner approximation of PL s.t. Bel1(xi) = li and
Pl1(xi) = ui, Denoeux [8] extensively studies meth-
ods to build a random set that is an outer approxi-
mation of PL. The problem of finding a possibility
distribution approximating PL is treated by Masson
and Denoeux in [19].

Two common cases where probability intervals can be
encountered as models of uncertainty are confidence
intervals on parameters of multinomial distributions
built from sample data, and expert opinions providing
such intervals.



3 P-boxes

We first recall some usual notions on the real line that
will be generalized in the sequel.

Let Pr be a probability function on the real line with
density p. The cumulative distribution of Pr is de-
noted F p and is defined by F p(x) = Pr((−∞, x]).

Let F1(x) and F2(x) be two cumulative distributions.
Then, F1(x) is said to stochastically dominate F2(x)
iff F1(x) ≤ F2(x) ∀x.

A P-box [15] is defined by a pair of cumulative distri-
butions F ≤ F (F stochastically dominates F ) on the
real line. It brackets the cumulative distribution of an
imprecisely known probability function with density
p s.t. F (x) ≤ F p(x) ≤ F (x) ∀x ∈ <.

3.1 Generalized Cumulative Distributions

Interestingly, the notion of cumulative distribution is
based on the existence of the natural ordering of num-
bers. Consider a probability assignment (probability
vector) λ = (λ1 . . . λn) defined over the finite space
X; λi denotes the probability Pr(xi) of the i-th ele-
ment xi, and

∑n
j=1 λj = 1. In this case, no natural

notion of cumulative distribution exists. In order to
make sense of this notion over X, one must equip it
with a complete preordering ≤R, which is a reflexive,
complete and transitive relation. An R-downset is of
the form {xi : xi ≤R x}, and denoted (x]R.

Definition 1. [9] The generalized R-cumulative dis-
tribution of a probability assignment λ on a finite,
completely preordered set (X,≤R) is the function F λ

R :
X → [0, 1] defined by F λ

R(x) = Pr((x]R).

The usual notion of stochastic dominance can also be
defined for generalized cumulative distributions. Con-
sider another probability assignment κ = (κ1 . . . κn)
on X. The corresponding R-dominance relation of
λ over κ can be defined by the pointwise inequality
Fλ
R < Fκ

R. Clearly, a generalized cumulative distribu-
tion can always be considered as a simple one, up to
a reordering of elements.

Any generalized cumulative distribution F λ
R with re-

spect to a complete preorder ≤R on X, of a proba-
bility measure Pr, with assignment λ on X, can also
be used as a possibility distribution πR whose asso-
ciated measure dominates Pr, i.e. maxx∈A F

λ
R(x) ≥

Pr(A),∀A ⊆ X. This is because a (generalized) cu-
mulative distribution is constructed by computing the
probabilities of events Pr(A) in a nested sequence of
downsets (xi]R. [10].

3.2 Generalized p-box

Using the generalizations of the notions of cumulative
distributions and of stochastic dominance described in
section 3.1, we define a generalized p-box as follows

Definition 2. A R-P-box on a finite, completely pre-
ordered set (X,≤R) is a pair of R-cumulative distri-
butions F λ

R(x) and F κ
R(x), s.t. F λ

R(x) ≤ F κ
R(x) (i.e. κ

is a probability assignment R-dominated by λ)

The probability family induced by a R-P-box is

Pp−box = {P |∀x, F
λ
R(x) ≤ FR(x) ≤ F κ

R(x).}

If we choose a relation R with xi ≤R xj iff i < j,
and, ∀xi ∈ X, consider the sets Ai = (xi]R, it
comes down to a family of nested confidence sets
∅ ⊆ A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ X. The family Pp−box
can then be represented by the following restrictions
on probability measures [9]:

αi ≤ P (Ai) ≤ βi i = 1, . . . , n (2)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 and β1 ≤ β2 ≤ . . . ≤
βn ≤ 1. Choosing X = < and Ai = (−∞, xi], it is
easy to see that we find back the usual definition of
P-boxes.

A generalized cumulative distribution being fully
specified by |X| values, it follows that 2|X| values
must be given to completely determine a generalized
p-box. Moreover, we can interpret p-boxes as a col-
lection of nested confidence intervals with upper and
lower probability bounds (which could come, for ex-
ample, from expert elicitation). In order to make no-
tation simpler, the upper and lower cumulative distri-
butions will respectively be noted F ∗, F∗ in the sequel
and, unless stated otherwise, we will consider (with-
out loss of generality) the order R s.t. xi ≤R xj iff
i < j with the associated nested sets Ai.

3.3 Generalized P-boxes in the setting of

possibility theory

Given that sets Ai can be interpreted as nested con-
fidence intervals with upper and lower bounds, it is
natural to search a connection with possibility the-
ory, since possibility distributions can be interpreted
as a collection of nested confidence intervals (a nat-
ural way of expressing expert knowledge). We thus
have the following proposition

Proposition 1. A family Pp−box described by a gen-
eralized P-box can be encoded by a pair of possibil-
ity distributions π1, π2 s.t. Pp−box = Pπ1

∩ Pπ2
with

π1(x) = F ∗(x) and π2(x) = 1− F∗(x)



Proof of proposition 1. Consider the definition of
a generalized p-box and the fact that a generalized
cumulative distribution can be used as a possibil-
ity distribution πR dominating the probability dis-
tribution Pr (see section 3.1). Then, the set of con-
straints (P (Ai) ≥ αi)i=1,n from equation (2) gener-
ates a possibility distribution π1 and the set of con-
straints (P (Ac

i ) ≥ 1− βi)i=1,n generates a possibility
distribution π2. Clearly Pp−box = Pπ1

∩ Pπ2
.

3.4 Generalized P-boxes are special case of

random sets

The following proposition was proved in [9]

Proposition 2. A family Pp−box described by a gen-
eralized P-box can be encoded by a random set s.t.
Pp−box = PBel.

Algorithm 1: R-P-box → random set

Input: Nested sets ∅, A1, . . . , An, X and bounds
αi, βi

Output: Equivalent random set
for k = 1, . . . , n+ 1 do

Build partition Fi = Ai \Ai−1

Rank αi, βi increasingly
for k = 0, . . . , 2n+ 1 do

Rename αi, βi by γl s.t.
α0 = γ0 = 0 ≤ γ1 ≤ . . . ≤ γl ≤ . . . ≤ γ2n ≤ 1 =
γ2n+1 = βn+1

Define focal set E0 = ∅
for k = 1, . . . , 2n+ 1 do

if γk−1 = αi then
Ek = Ek−1 ∪ Fi+1

if γk−1 = βi then
Ek = Ek−1 \ Fi

Set m(Ek) = γk − γk−1

Algorithm 1 provides an easy way to build the ran-
dom set encoding a generalized p-box. It is similar
to algorithms given in [16, 24], and extends them to
more general spaces. The main idea of the algorithm
is to use the fact that a generalized p-box can be seen
as a random set whose focal elements are unions of
adjacent sets in a partition. Thanks to the nested na-
ture of sets Ai, we can build a partition of X made of
Fi = Ai \Ai−1, and then add or substract consecutive
elements of this partition to build the focal sets (of the
form

⋃
j≤i≤k Fi) of the random set equivalent to the

generalized p-box. The following example illustrates
both the notion of generalized p-box and algorithm 1.

Example 1. Consider a space X made of six ele-
ments {x1, . . . , x6} (These elements could be, for in-
stance, successive components on a production line).
For various reasons, one can only observe whether

the event A1 = {x1, x2}, A2 = {x1, x2, x3}, A3 =
{x1, x2, x3, x4, x5} or the whole X happens. Suppose
an expert must evaluate the likelihood of these events,
and only gives us probability intervals :

P (A1)∈ [0, 0.3] P (A2)∈ [0.2, 0.7] P (A3)∈ [0.5, 0.9]

So we have a generalized p-box, the order of the el-
ements being determined by the possible observations
(notice that we are indifferent to the order of x1, x2

and of x4, x5). Applying algorithm 1, we have :

F1 = {x1, x2} F2 = {x3} F3 = {x4, x5} F4 = {x6}

and

0(α0) ≤ 0(α1) ≤ 0.2(α2) ≤ 0.3(β1) ≤ 0.5(α3)

≤ 0.7(β2) ≤ 0.9(β3) ≤ 1

which gives us the following corresponding random set

m(E1)=m({x1,x2})=0 m(E2)=m({x1,x2,x3})=0.2

m(E3)=m({x1,x2,x3,x4,x5})=0.1 m(E4)=m({x3,x4,x5})=0.2

m(E5)=m({x3,x4,x5,x6})=0.2 m(E6)=m({x4,x5,x6})=0.2

m(E7)=m({x6})=0.1

which makes the imprecision of the available informa-
tion more visible.

3.5 Generalized P-boxes and probability

intervals

Provided an order R has been defined on elements xi,
a method to build a p-box from probability intervals
L can be easily derived from equations (1). Lower
an upper generalized cumulative distributions can be
computed as follows

F∗(xi)=P (Ai) = max(
∑

xi∈Ai

lj , 1−
∑

xi /∈Ai

uj)

F ∗(xi)=P (Ai) = min(
∑

xi∈Ai

ui, 1−
∑

xi /∈Ai

li) (3)

Transforming a p-box into probability intervals is also
an easy task. First, let us assume that each element
Fi of the partition used in algorithm 1 is reduced to a
singleton xi. Corresponding probability intervals are
then given by the two following formulas:

P (Fi) = P (xi) = li = max(0, αi − βi−1)

P (Fi) = P (xi) = ui = βi − αi−1

if a set Fi is made of n elements xi1, . . . , xin, it is easy
to see that l(xij) = 0 and that u(xij) = P (Fi), since
xij ∈ Fi.

Let us note that transforming probability intervals
into p-boxes (and conversely) generally loses informa-
tion, except in the degenerated cases of precise proba-
bility assignment and of total ignorance. If no obvious



order relation R between elements xi is to be privi-
leged, and if one wants to transform probability in-
tervals into generalized p-boxes, we think that a good
choice for the order R is the one s.t.

n∑

i=1

F ∗(xi)− F∗(xi)

is minimized, so that a minimal amount of informa-
tion is lost in the process.

Another interesting fact to pinpoint is that both cu-
mulative distributions given by equations (3) can be
interpreted as possibility distributions dominating the
family PL (for F∗, the associated possibility distribu-
tion is 1− F∗). Thus, computing either F ∗ or F∗ is a
method to find a possibility distribution approximat-
ing PL, which is different from the one proposed by
Masson and Denoeux [19].

4 Clouds

We begin this section by recalling basic definitions
and results due to Neumaier [21], cast in the ter-
minology of fuzzy sets and possibility theory. A
cloud is an Interval-Valued Fuzzy Set F such that
(0, 1) ⊆ ∪x∈XF (x) ⊆ [0, 1], where F (x) is an interval
[δ(x), π(x)]. In the following, it is either defined on
a finite space X, or it is a continuous interval-valued
fuzzy interval (IVFI) on the real line ( a “cloudy” inter-
val). In the latter case each fuzzy set has cuts that are
closed intervals. When the upper membership func-
tion coincides with the lower one, (δ = π) the cloud is
called thin, and when the lower membership function
is identically 0, the cloud is called fuzzy by Neumaier.
Let us note that these names are somewhat counter-
intuitive, since a thin cloud correspond to a fuzzy set
with precise membership function, while a fuzzy cloud
is equivalent to a probability family modeled by a pos-
sibility distribution.

A random variable x with values in X is said to belong
to a cloud F if and only if ∀α ∈ [0, 1]:

P (δ(x) ≥ α) ≤ 1− α ≤ P (π(x) > α) (4)

under all suitable measurability assumptions.

If X is a finite space of cardinality n, a cloud can be
defined by the following restrictions :

P (Bi) ≤ 1− αi ≤ P (Ai) and Bi ⊆ Ai, (5)

where 1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0
and ∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ An+1 =
X; ∅ = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊆ Bn+1 = X.

The confidence sets Ai and Bi are respectively the
strong and regular α-cut of fuzzy sets π and δ (Ai =
{xi, π(xi) > αi+1} and Bi = {xi, δ(xi) ≥ αi+1}).

As for probability intervals and p-boxes, eliciting a
cloud requires 2|X| values.

4.1 Clouds in the setting of possibility

theory

Let us first recall the following result regarding possi-
bility measures (see [10]):

Proposition 3. P ∈ Pπ if and only if 1 − α ≤
P (π(x) > α),∀α ∈ (0, 1]

The following proposition directly follows

Proposition 4. A probability family Pδ,π described
by the cloud (δ, π) is equivalent to the family Pπ ∩
P1−δ described by the two possibility distributions π

and 1− δ.

Proof of proposition 4. Consider a cloud (δ, π),
and define π = 1−δ. Note that P (δ(x) ≥ α) ≤ 1−α is
equivalent to P (π > β) ≥ 1−β, letting β = 1−α. So
it is clear from equation (4) that probability measure
P is in the cloud (δ, π) if and only if it is in Pπ ∩ Pπ.
So a cloud is a family of probabilities dominated by
two possibility distributions (see [14]) .

This property is common to generalized p-boxes
and clouds: they define probability families upper
bounded by two possibility measures. It is then nat-
ural to investigate their relationships.

4.2 Finding clouds that are generalized

p-boxes

Proposition 5. A cloud is a generalized p-box iff
{Ai, Bi, i = 1, . . . , n} form a nested sequence of sets
(i.e. there is a linear preordering with respect to in-
clusion)

Proof of proposition 5. Assume the sets Ai and
Bj form a globally nested sequence whose current el-
ement is Ck. Then the set of constraints defining a
cloud can be rewritten in the form γk ≤ P (Ck) ≤ βk,
where γk = 1−αi and βk = min{1−αj : Ai ⊆ Bj} if
Ck = Ai; βk = 1−αi and γk = max{1−αj : Aj ⊆ Bi}
if Ck = Bi.

Since 1 = α0 > α1 > . . . > αn < αn+1 = 0, these
constraints are equivalent to those of a generalized p-
box. But if ∃ Bj , Ai with j > i s.t. Bj 6⊂ Ai and
Ai 6⊂ Bj , then the cloud is not equivalent to a p-box,
since confidence sets would no more form a complete
preordering with respect to inclusion.

In term of pairs of possibility distributions, it is now
easy to see that a cloud (δ, π) is a generalized p-box
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Figure 1: Comonotonic cloud
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Figure 2: Non-Comonotonic cloud

if and only if π and δ are comonotonic. We will thus
call such clouds comonotonic clouds. If a cloud is
comonotonic, we can thus directly adapt the various
results obtained for generalized p-boxes. In partic-
ular, because comonotonic clouds are generalized p-
boxes, algorithm 1 can be used to get the correspond-
ing random set. Notions of comonotonic and non-
comonotonic clouds are respectively illustrated by fig-
ures 1 and 2

4.3 Characterizing and approximating

non-comonotonic clouds

The following proposition characterizes probability
families represented by most non-comonotonic clouds,
showing that the distinction between comonotonic
and non-comonotonic clouds makes sense (since the
latter cannot be represented by random sets).

Proposition 6. If (δ, π) is a non-comonotonic cloud
for which there are two overlapping sets Ai, Bj that
are not nested (i.e. Ai ∩ Bj 6= {Ai, Bj , ∅}), then the
lower probability of the induced family Pδ,π is not even
2-monotone.

The proof can be found in the appendix.

Remark 1. The case for which we have Bj ∩ Ai ∈
{Ai, Bj} for all pairs Ai, Bj is the case of comono-
tonic clouds. Now, if a cloud is such that for all pairs
Ai, Bj : Bj ∩Ai ∈ {Ai, Bj , ∅} with at least one empty
intersection, then it is still a random set, but no longer
a generalized p-box. Let us note that this special case
can only occur for discrete clouds.

Since it can be computationally difficult to work with

capacities that are not 2-monotone, one could wish
to work either with outer or inner approximations.
We propose two such approximations, which are easy
to compute and respectively correspond to necessity
(possibility) measures and belief (plausibility) mea-
sures.

Proposition 7. If Pδ,π is the probability family de-
scribed by the cloud (δ, π) on a referential X, then,
the following bounds provide an outer approximation
of the range of P (A) :

max(Nπ(A), N1−δ(A)) ≤ P (A) ≤

min(Ππ(A),Π1−δ(A)) ∀A ⊂ X (6)

Proof of proposition 7. Since we have that Pδ,π =
P1−δ ∩Pπ, and given the bounds defined by each pos-
sibility distributions, it is clear that equation 6 give
bounds of P (A).

We can check that the bounds given by equation (6)
are the one considered by Neumaier in [21]. Since
these bounds are, in general, not the infinimum and
supremum of P (A) on Pδ,π, Neumaier’s claim that
clouds are only vaguely related to Walley’s previsions
or random sets is not surprising. Nevertheless, if we
consider the relationship between clouds and possi-
bility distributions, taking this outer approximation,
that is very easy to compute, seems very natural.

Nevertheless, these bounds are not, in general, the
infinimum and the supremum of P (A) over Pδ,π. To
see this, consider a discrete cloud made of four non-
empty elements A1, A2, B1, B2. It can be checked that

π(x) = 1 if x ∈ A1;

= α1 if x ∈ A2 \A1;

= α2 if x 6∈ A2.

δ(x) = α1 if x ∈ B1;

= α2 if x ∈ B2 \B1;

= 0 if x 6∈ B2.

Since P (A2) ≥ 1 − α2 and P (B1) ≤ 1 − α1,
from (5), we can easily check that P (A2 \ B1) =
P (A2 ∩ Bc

1) = α1 − α2. Now, Nπ(A2 ∩ Bc
1) =

min(Nπ(A2), Nπ(B
c
1)) = 0 since Ππ(B1) = 1 and

B1 ⊆ A1. Considering distribution δ, we can have
N1−δ(A2∩B

c
1) = min(N1−δ(A2), N1−δ(B

c
1)) = 0 since

N1−δ(A2) = ∆δ(A
c
2) = 0 since B2 ⊆ A2. Equation (6)

can thus result in a trivial lower bound, different from
P (A2 \B1).

The next proposition provides an inner approximation
of Pδ,π

Proposition 8. Given the sets {Bi, Ai, i = 1, . . . , n}
inducing the distributions (δ, π) of a cloud and the



corresponding αi, the belief and plausibility measures
of the random set s.t. m(Ai \ Bi−1) = αi−1 − αi are
inner approximations of Pδ,π.

It is easy to see that this random set can always be
defined. We can see that it is always an inner approx-
imation by using the contingency matrix advocated
in the proof of proposition 6 (see appendix). In this
matrix, the random set defined above comes down to
concentrating weights on diagonal elements. This in-
ner approximation is exact in case of comonotonicity
or when we have Ai ∩Bj ∈ {Ai, Bj , ∅} for any pair of
sets Ai, Bj defining the clouds.

4.4 A note on thin and continuous clouds

Thin clouds (δ = π) constitute an interesting special
case of clouds. In this latter case, conditions defining
clouds are reduced to

P (π(x) ≥ α) = P (π(x) > α) = 1− α,∀α ∈ (0, 1).

On finite sets these constraints are generally contra-
dictory, because P (π(x) ≥ α) > P (π(x) > α) for
some α, hence the following theorem:

Proposition 9. If X is finite, then P(π) ∩ P(1− π)
is empty.

which is proved in [14], where it is also shown that
this emptiness is due to finiteness. A simple shift of
indices solves the difficulty. Let π(ui) = αi such that
α1 = 1 > . . . > αn > αn+1 = 0. Consider δ(ui) =
αi+1 < π1(ui). Then P(π) ∩ P(1 − δ) contains the
unique probability measure P such that the probabil-
ity weight attached to ui is pi = αi−αi+1,∀i = 1 . . . n.
To see it, refer to equation (5), and note that in this
case Ai = Bi.

In the continuous case, a thin cloud is non-trivial.
The inclusions [δ(x) ≥ α] ⊆ [π(x) > α] (correspond-
ing to Bi ⊆ Ai) again do not work but we may have
P (π(x) ≥ α) = P (π(x) > α) = 1−α,∀α ∈ (0, 1). For
instance, a cumulative distribution function, viewed
as a tight p-box, defines a thin cloud containing the
only random variable having this cumulative distribu-
tion (the “right” side of the cloud is rejected to∞). In
fact, it was suggested in [14] that a thin cloud contains
in general an infinity of probability distributions.

Insofar as Proposition 5 can be extended to the re-
als (this could be shown, for instance, by proving the
convergence of some finite outer and inner approxima-
tions of the continuous model, or by using the notion
of directed set [5] to prove the complete monotonic-
ity of the model), then a thin cloud can be viewed as
a generalized p-box and is thus a (continuous ) be-
lief function with uniform mass density, whose focal

sets are doubletons of the form {x(α), y(α)} where
{x : π(x) ≥ α} = [x(α), y(α)]. It is defined by the
Lebesgue measure on the unit interval and the mul-
timapping α −→ {x(α), y(α)}. This result gives us
a nice way to characterize the infinite set of random
variables contained in a thin cloud. In particular, con-
centrating the mass density on elements x(α) or on
elements y(α) would respectively give the upper and
lower cumulative distributions that would have been
associated to the possibility distribution π alone (let
us note that every convex mixture of those two cumu-
lative distributions would also be in the thin cloud).
It is also clear that Bel(π(x) ≥ α) = 1−α. More gen-
erally, if Proposition 5 holds in the continuous case,
a comonotonic cloud can be characterized by a con-
tinuous belief function [26] with uniform mass den-
sity, whose focal sets would be unions of disjoint in-
tervals of the form [x(α), u(α)] ∪ [v(α), y(α)] where
{x : π(x) ≥ α} = [x(α), y(α)] and {x : δ(x) ≥ α} =
[u(α), v(α)].

4.5 Clouds and probability intervals

Since probability intervals are 2-monotone capacities,
while clouds are either ∞-monotone capacities or not
even 2-monotone capacities, there is no direct corre-
spondence between probability intervals and clouds.
Nevertheless, given previous results, we can easily
build a cloud approximating a family PL defined by
a set L of probability intervals (but perhaps not the
most "specific" one): indeed, any generalized p-box
built from the probability intervals is a comonotonic
cloud encompassing the family PL.

Finding the "best" (i.e. keeping as much information
as possible, given some information measure) method
to transform probability intervals into cloud is an
open problem. Any such transformation in the finite
case should follow some basic requirements such as:

1. Since clouds can model precise probability assign-
ments, the method should insure that a precise
probability assignment will be transformed into
the corresponding (almost thin) cloud.

2. Given a set L of probability intervals, the trans-
formed cloud [δ, π] should contain PL (i.e. Pδ,π ⊂
PL) while being as close to it as possible.

Let us note that using the transformation proposed
in section 3.5 for generalized p-boxes satisfies these
two requirements. Another solution is to extend Mas-
son and Denoeux’s [19] method that builds a possibil-
ity distribution covering a set of probability intervals,
completing it by a lower distribution δ (due to lack of
space, we do not explore this alternative here).
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Figure 3: Representations relationships. A −→ B : B
is a special case of A

5 Conclusions

Figure 3 summarizes our results cast in a more gen-
eral framework of imprecise probability representa-
tions (our main contributions in boldface).

In this paper, we have considered many practical rep-
resentations of imprecise probabilities, which are eas-
ier to handle than general probability families. They
often require less data to be fully specified and they
allow many mathematical simplifications, which may
prove to increase computational efficiency (except,
perhaps, for non-comonotonic clouds).

Some clarifications are provided concerning the sit-
uation of the cloud formalism. The fact that non-
comonotonic clouds are not even 2-monotone capac-
ities tends to indicate that, from a computational
standpoint, they may be more difficult to exploit than
the other formalisms. Nevertheless, as far as we know,
they are the only simple model generating capacities
that are not 2-monotone.

A work that remains to be done to a large ex-
tent is to evaluate the validity and the usefulness of
these representations, particularly from a psycholog-
ical standpoint (even if some of it has already been
done [23, 18]). Another issue is to extend presented
results to continuous spaces or to general lower/upper
previsions (by using results from, for example [26, 6]).
Finally, a natural continuation to this work is to ex-
plore various aspects of each formalisms in a manner
similar to the one of De campos et al. [2]. What be-

comes of random sets, possibility distributions, gen-
eralized p-boxes and clouds after fusion, marginaliza-
tion, conditioning or propagation? Do they preserve
the representation? and under which assumptions ?
To what extent are these representations informative
? Can they easily be elicited or integrated ? If many
results already exist for random sets and possibility
distributions, there are fewer results for generalized
p-boxes or clouds, due to their novelty.
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Appendix

Proof of proposition 6 (sketch). Our proof uses
the following result by Chateauneuf [3]: Let m1,m2

be two random sets with focal sets F1,F2, each
of them respectively defining a probability family
PBel1 ,PBel2 . Here, we assume that those families are
"compatible" (i.e. PBel1 ∩ PBel2 6= ∅).

Then, the result from Chateauneuf states the follow-
ing : the lower probability P (E) of the event E on
PBel1 ∩ PBel2 is equal to the least belief measure
Bel(E) that can be computed on the set of joint nor-
malized random sets with marginals m1,m2. More
formally, let us consider a set Q s.t. Q ∈ Q iff

• Q(A,B) > 0 ⇒ A × B ∈ F1 × F2 (masses over
the cartesian product of focal sets)

• A ∩ B = ∅ ⇒ Q(A,B) = 0 (normalization con-
straints)

• m1(A) =
∑

B∈F2
Q(A,B) and m2(B) =∑

A∈F1
Q(A,B) (marginal constraints)

and the lower probability P (E) is given by the follow-
ing equation

P (E) = min
Q∈Q

∑

(A∩B)⊆E

Q(A,B) (7)

where Q is the set of joint normalized random sets.
This result can be applied to clouds, since the family
described by a cloud is the intersection of two families
modeled by possibility distributions.



To illustrate the general proof, we will restrict our-
selves to a 4-set cloud (the most simple non-trivial
cloud that can be found). We thus consider four sets
A1, A2, B1, B2 s.t. A1 ⊂ A2,B1 ⊂ B2,Bi ⊂ Ai to-
gether with two values α1, α2 s.t. 1(= α0) > α1 >

α2 > 0(= α3) and the cloud is defined by enforcing
the inequalities P (Bi) ≤ 1−αi ≤ P (Ai) i = 1, 2. The
random sets equivalent to the possibility distributions
π, 1− δ are summarized in the following table:

π 1− δ

m(A1) = 1− α1 m(Bc
0 = X) = 1− α1

m(A2) = α1 − α2 m(Bc
1) = α1 − α2

m(A3 = X) = α2 m(Bc
2) = α2

Furthermore, we add the constraint A1 ∩ B2 6=
{A1, B2, ∅}, related to the non-monotonicity of the
cloud. We then have the following contingency ma-
trix, where the mass mij is assigned to the intersec-
tion of the corresponding sets at the beginning of line
i and the top of column j:

Bc
0 = X Bc

1 Bc
2

∑

A1 m11 m12 m13 1− α1

A2 m21 m22 m23 α1 − α2

A3 = X m31 m32 m33 α2∑
1− α1 α1 − α2 α2 1

We now consider the four events A1, B
c
2, A1∩B

c
2, A1∪

Bc
2. Given the above contingency matrix, we imme-

diately have P (A1) = 1 − α1 and P (Bc
2) = α2, since

A1 only includes the (joint) focal sets in the first line
and Bc

2 in the third column.

It is also easy to see that P (A1 ∩B
c
2) = 0, by consid-

ering the mass assignment mii = αi−1 − αi (we then
have m13 = 0, which is the mass of the only joint focal
set included in A1 ∩B

c
2).

Now, concerning P (A1 ∪ B
c
2), let us consider the fol-

lowing mass assignment:

A2 ∩B
c
1 : m22 = α1 − α2

A3 ∩B
c
0 : m31 = min(1− α1, α2)

A1 ∩B
c
0 : m11 = 1− α1 −m31

A3 ∩B
c
2 : m33 = α2 −m31

A1 ∩B
c
2 : m13 = m31

it can be checked that this mass assignment satisfies
the constraints of the contingency matrix, and that
the only joint focal sets included in A1 ∪B

c
2 are those

with masses m11,m33,m13. Summing these masses,
we have P (A1 ∪B

c
2) = max(α2, 1− α1). Hence:

P (A1 ∪B
c
2) + P (A1 ∩B

c
2) < P (Bc

2) + P (A1)

max(α2, 1− α1) < 1− α1 + α2

an inequality that clearly violates the 2-monotonicity
property. We have thus shown that in the 4-set case,
2-monotonocity never holds for families modeled by
non-comonotonic clouds.

Now, in the general case, we have the following con-
tingency matrix

Bc
0 · Bc

j · Bc
n

∑

A1 m11 1− α1

· ·
Ai mi(j+1) αi−1 − αi
· ·

An+1 m(n+1)(n+1) αn∑
1− αj− αn
α1 αj+1

Under the hypothesis of proposition 6, there are two
sets Ai, Bj s.t. Ai ∩ Bj 6= {Ai, Bj , ∅}. Due to the
inclusion relationships between the sets, and similarly
to what was done in the 4-set case, we have

P (Ai) = 1− αi

P (Bc
j ) = αj

P (Ai ∩B
c
j ) = 0

Next, let us concentrate on event Ai ∪ Bc
j

(which is different from X by hypothesis). Let
us suppose that mkk = αk−1 − αk, ex-
cept for masses m(j+1)i,mii,mi(j+1),m(j+1)(j+1).
This is similar to the 4-set case with masses
m(j+1)i,mii,mi(j+1),m(j+1)(j+1) and we define the
following assignment

Ai ∩B
c
j : mi(j+1) = min(αi−1 − αi, αj − αj+1)

Ai ∩B
c
i−1 : mii = αi−1 − αi −mi(j+1)

Aj+1 ∩B
c
j : m(j+1)(j+1) = αj − αj+1 −mi(j+1)

Aj+1 ∩B
c
i−1 : m(j+1)i = min(αi−1 − αi, αj − αj+1)

Given this specific mass assignment (which is always
inside the set Q), and summing assignments given to
subsets of Ai ∪B

c
j , the following inequality results:

P (Ai ∪B
c
j ) ≤ max(αj+1 + 1− αi, αj + 1− αi−1)

so,

P (Ai ∪B
c
j ) + P (Ai ∩B

c
j ) < P (Ai) + P (Bc

j ),

which clearly violates the 2-monotonicity property.


