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Abstract

We propose a new definition for conditioning in the
Chaotic Probability framework. We show that the
Conditional Chaotic Probability model that we pro-
pose can be given the interpretation of a generalized
Markov chain. Chaotic Probabilities were introdu-
ced by Fine et al. as an attempt to model chance
phenomena with a usual set of measures M endowed
with an objective, frequentist interpretation instead of
a compound hypothesis or behavioral subjective one.
We follow the presentation of the univariate case cha-
otic probability model and provide an instrumental
interpretation of random process measures consistent
with a conditional chaotic probability source, which
can be used as a tool for simulation of our model. Gi-
ven a finite time series, we also present a universal
method for estimation of conditional chaotic probabi-
lity models that is based on the analysis of the relative
frequencies taken along a set of subsequences chosen
by a given set of rules.

Keywords: Imprecise Probabilities, Founda-
tions of Probability, Church Place Selection
Rules, Probabilistic Reasoning, Conditioning,
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1 Introduction

1.1 What is Chaotic Probability About?

Unlike the standard theory of real valued probability
which since its beginning was Janus faced having to
deal with both objective and subjective phenomena,
sets of measures are mainly used to model behavior
and subjective beliefs. Chaotic Probabilities were de-
veloped by Fine et al. [2] [4] [12] as an attempt to
make sense of an objective, frequentist interpretation
of a usual set of probability measures M. In this set-
ting, M is intended to model stable (although not
stationary in the standard stochastic sense) physical
sources of finite time series data that are highly irre-

gular. The work was in part inspired in the following
quotation from Kolmogorov 1983 [7]:

“In everyday language we call random those pheno-
mena where we cannot find a regularity allowing us
to predict precisely their results. Generally speaking,
there is no ground to believe that random phenomena
should possess any definite probability. Therefore, we
should distinguish between randomness proper (as ab-
sence of any regularity) and stochastic randomness
(which is the subject of probability theory). There
emerges the problem of finding reasons for the applica-
bility of the mathematical theory of probability to the
real world.”

Despite that fact pointed out by Kolmogorov, the idea
of models of physical chance phenomena sharing the
precision of real number system is so well-entrenched
that identifications of chaotic probability phenomena
are difficult to make and hard to defend.

1.2 Previous Work and Overview

A large portion of the literature on imprecise proba-
bilities gives a behavioral, subjective interpretation
of this model Walley 1991 [14]. But some work has
been done on the development of a frequentist inter-
pretation of imprecise probabilities. Fine et al. have
worked on asymptotics or laws of large numbers for
interval-valued probability models [9] [13] [11] [6].

The work of Cozman and Chrisman 1997 [1] studying
estimation of credal sets by analyzing limiting rela-
tive frequencies along a set of subsequences of a time
series is very similar to the approach taken by Fierens
and Fine, except that the latter restrict themselves to
studying finite time series data. Another quote from
Kolmogorov 1963 [8] explains the reason for such a
restriction:

“The frequency concept based on the notion of limiting
frequency as the number of trials increases to infinity,
does not contribute anything to substantiate the ap-



plicability of the results of probability theory to real
practical problems where we have always to deal with
a finite number of trials.”

In their work on Chaotic Probability models [2] [4],
Fierens and Fine provided an instrumental interpre-
tation of the model, a method for simulation of a ran-
dom sequence given the model, and a method for esti-
mation of the model given a finite random sequence.
They have worked both on the univariate case and
in the conditional case. This paper will parallel their
approach on a different conditional setting that can
be interpreted as a generalized Markov chain. We
discuss the differences between their approach to con-
ditioning and ours in Section 3.5. Roughly speaking,
in our setting we have that a conditional chaotic pro-
bability model M|K is a function that associates for
each possible sequence y of K-previous outcomes a
univariate chaotic probability model M|K(y), i.e., a
set of probability measures.

Section 2.1 provides an instrumental interpretation of
conditional chaotic probability models. Although we
do not claim this interpretation for explaining real
world data, it is useful to develop it because it provi-
des a means to understand the behavior of conditional
chaotic probabilities using standard well-known tools
of probability theory, it also provides the basis for si-
mulation of these models, and finally it extends the
interpretation proposed by Fierens and Fine for uni-
variate chaotic probabilities. With that interpretation
in mind we also provide a method for simulation of a
data sequence given the Conditional Chaotic Proba-
bility model in Section 2.2.

In Section 3, we analyze the problem of estimating
conditional chaotic probabilities from data. As in the
univariate setup, we do that by studying the relative
frequency taken along selected subsequences. We de-
fine three properties of a set of subsequence selection
rules: Conditional Causal Faithfulness, Conditional
Homogeneity and Conditional Visibility. By Conditi-
onal Causally Faithful rules we mean rules that, for
each fixed sequence of past K outcomes, select subse-
quences such that the empirical and theoretical time
averages along the selected subsequence are sufficien-
tly close together. A set of rules renders M|K con-
ditionally visible if, for each fixed sequence y of past
K outcomes, all measures in M|K(y) can be estima-
ted by relative frequencies along the selected subse-
quences. Finally, a set of rules is conditionally ho-
mogeneous if, for each fixed sequence y of past K
outcomes, it cannot expose more than a small neigh-
borhood of a single measure contained in the convex
hull of M|K(y), intuitively a set of rules is conditi-
onally homogenous if the relative frequencies taken
along the terms selected by the rules and that have

y as the previous K outcomes are all close to a sin-
gle measure in the convex hull of M|K(y). We then
prove the existence of families of causal subsequence
selection rules that can make M|K conditionally visi-
ble. Following the steps of Rêgo and Fine 2005 [12],
in Section 4 we describe a universal methodology for
finding a family of causal subsequence selection ru-
les that can make M|K conditionally visible, and in
Section 5, we strengthen this result by assuring that
the relative frequency taken along every subsequence
analyzed is close to some measure in ∪yM|K(y) with
high probability. In Section 6, we give the interpreta-
tion of conditional chaotic probabilities as a Genera-
lized Markov Chain that instead of a single transition
probability measure has a set of transition probabili-
ties. We conclude in Section 7.

2 From Model to Data

2.1 Instrumental Interpretation

Let X = {z1, z2, ..., zξ} be a finite sample space.1 We
denote by X ∗ the set of all finite sequences of elements
taken from X . A particular sequence of n samples
from X is denoted by xn = {x1, x2, ..., xn}. P denotes
the set of all measures on the power set of X and
xi:j = {xi, xi+1, ..., xj−1, xj}. A conditional chaotic
probability model given the past K outcomes M|K :
XK → 2P is a function associating for each sequence
of past K outcomes a subset of P. Intuitively, M|K
models the “marginals” of the next outcome of some
process generating sequences in X ∗ given the previous
K outcomes. This section provides an interpretation
of such a process.

Let F be a conditional chaotic selection function,
F : X ∗ → ∪y∈XKM|K(y). At each instant i, a mea-
sure νi = F (xi−1) is chosen according to this selection
function F . We require that the complexity of F be
neither too complex, so that M|K can not be exposed
on the basis of a finite time series, nor too simple so
that a standard stochastic process can be used to mo-
del the phenomena. We also require that F satisfies
the following restriction

F (xi−1) ∈M|K(xi−K:i−1), ∀i > K. (1)

Let µF ∈ PK be the initial probability distribution
over the first K symbols.

An actual data sequence xn is assessed by the graded
potential of the realization of a sequence of random

1Recently, Fierens 2007 [3] extended the univariate Chaotic
Probability Model to be defined on any subset of the reals. For
ease of exposition, we focus on the finite case here.



variables Xn described by:

P (X1 = x1, X2 = x2, ..., Xn = xn) =

= µF (X1 = x1, ..., XK = xK)
n∏

l=K+1

vl(xl) (2)

where νl ∈ M|K(xl−K:l−1)

We denote by M∗
|K the family of all such process me-

asures P . This interpretation is usually considered
instrumental (i.e., without commitment to reality),
although theory also applies if there is empirical rea-
lity in the description of F , but F is simply unknown.

In the unconditional chaotic probability model, it is
understood that all relevant information produced by
the source is captured by the coarse-grained descrip-
tion provided by the set of measures M and the
further information contained in the fine-grained des-
cription, F , has no empirical reality (Rêgo and Fine
2005 [12] emphasize that a similar situation occurs in
quantum mechanics, see Gell-Mann 1994 [5], pg. 144–
146). With this conditional model, we try to develop a
model that does not discard all information provided
by F , it considers the fact that for different previous
K outcomes the source behaves differently. That is,
it allows for the existence of a simple structure in the
choice selection function.

Notice also, that in this account, for each sequence y
of previous K outcomes, it is the whole set M|K(y)
that models the chance phenomena and not a “true”
individual measure in M|K(y) that is unknown to us,
as in the usual compound hypothesis modeling.

Like in the unconditional case, no matter how com-
plex the conditional selection function is, the process
measure P is a standard stochastic process, the is-
sue is whether it reflects the reality of the underlying
phenomena. In the unconditional case, if the selection
function is chaotic,2 then all we can hope to learn and
therefore predict for future terms in the sequence is
the coarse-grained description of the model given by
M, a subset of P. However, in the conditional case
that we present here, the conditional selection func-
tion satisfies (1), and one can hope to learn M|K(y)
for each y ∈ XK . Therefore, in the conditional cha-
otic probability model, there is some structure in the

2As in the original work of Fierens and Fine [2] [4], the ad-
jective “chaotic” is not used in the traditional technical sense
of the mathematical literature on chaos, rather it is used in
the sense of the selection function F being neither too simple
nor too complex, where the complexity of the selection func-
tion can be measured, for example, in terms of Kolmogorov
Complexity [10]. As well stated by an anonymous referee, “the
term ‘chaotic probabilities’ refers to viewpoint in which there
is no true measure that is the model, because models for indi-
vidual outcomes vary unpredictably while remaining in a given
set M”.

chaotic behavior of the conditional selection function
so that, as we will see in Section 3, the fact that the
previous K outcomes were equal to some sequence y
allow us to have a finer description of the model than
just the coarse-grained description of the model given
by M|K .

The next subsection digresses on a new statistical mo-
del that gives an application for the mathematical to-
ols developed here. Fierens 2007 [3] also provides a
motivation for the mathematical tools developed in
the theory of chaotic probabilities using it for robust
stochastic simulation.

2.1.1 Digression on a New Statistical Model

While our primary interest is not in a statistical com-
pound hypothesis, the results of this paper do bear
on a new statistical estimation model.

We can partially specify any stochastic process model
P ∈ P by specifying the following set of conditional
measures for the individual times for all possible y ∈
XK :

MP
|K(y) = {ν : (∃j ≥ K)(∃xj), xj−K+1:j = y,

ν(Xj+1 ∈ A) = P (Xj+1 ∈ A|Xj = xj), ∀A ⊂ X}

Note that we do not keep track of the full conditioning
event, only of the measure ν and of the previous K
outcomes. We then wish to estimate MP

|K(y), ∀y ∈
XK , from data xn. Also note that, in general, the
process is not Markovian in the traditional sense, as
the conditional selection function F depends on the
whole history. Although, as we show in Section 6, it
can be given the interpretation of a generalized Mar-
kov chain.

The model can be used in the following situation.
Suppose we have an opponent in a game who can de-
cide whether or not to act upon a trial t after exami-
ning the history of outcomes xt−1 prior to that trial.
Certain distributions P (Xt ∈ A|Xt−1 = xt−1) for the
trial at time t are favorable to us and others to our op-
ponent. An assessment of the range of consequences
to us from choices made by an intelligent opponent
can be calculated from MP

|K(y), ∀y ∈ XK .

2.2 Simulation

In this section, we provide a method for sequence ge-
neration according to a source that is modeled by a
conditional chaotic probability. First of all, we define
a distance metric between probability measures as:



(∀µ, µ′ ∈ P) d(µ, µ′) .= max
z∈X

|µ(z)− µ′(z)|

Note that P is compact with respect to d, so for all ε >
0 we can find a minimal finite covering of it by Qε balls
of radius ε, {B(ε, µi)}, where µi are computable mea-
sures. Let Nε be the size of the smallest subset of the
above covering of the simplex that covers the actual
set of probabilities that can be selected by the condi-
tional chaotic selection function, ∪y∈XKM|K(y), and
denote this subset by Mε. Let Mε(y) be the smal-
lest subset of Mε that covers the set of probabilities
that can be selected after the string of outcomes y,
M|K(y). Then, given an appropriate chaotic selection
function F : X ∗ → Mε, where Mε = ∪y∈XKMε(y),
satisfying F (xi−1) ∈ Mε(xi−K:i−1), ∀i > K, and
an appropriate initial probability distribution µF , the
following algorithm can be used for simulation:

• Use a pseudo-random number generator to gene-
rate xK according to µF

• For i = K + 1 to n

– Choose νi = F (xi−1) ∈Mε(xi−K:i−1)

– Choose any ν′i ∈ B(ε, νi) ∩M|K(xi−K:i−1)

– Use a pseudo-random number generator to
generate xi according to ν′i

Since we want to expose all of M|K(y), ∀y ∈ XK ,
in a single but sufficiently long simulated sequence,
we require F to visit several times each measure in
Mε. In the following sections, we study the problem
of estimating a conditional chaotic probability model
given a long enough but finite data sequence.

3 From Data to Model

3.1 Subsequence Analysis

The estimation process in the conditional chaotic pro-
bability framework uses a finite time series and analy-
zes it calculating ξK sets of relative frequencies taken
along subsequences selected by causal subsequence se-
lection rules (also known as Church place selection ru-
les). These rules are called causal because the next
choice is a function only of past values in the sequence
and not, say, of the whole sequence. These rules sa-
tisfy the following:

Definition 3.1: An effectively computable function
ϕ is a causal subsequence selection rule if:

ϕ : X ∗ → {0, 1}

and, for any xn ∈ X ∗, xk is the j-th term in the
generated subsequence xϕ,n, of length λϕ,n, if:

ϕ(xk−1) = 1,

k∑

i=1

ϕ(xi−1) = j, λϕ,n =
n∑

k=1

ϕ(xk−1)

Given a set of causal subsequence selection rules, Ψ,
for each ϕ ∈ Ψ and y ∈ XK , define the empirical and
theoretical conditional time averages along a chosen
subsequence by:

(∀A ⊂ X ),

µϕ,n,y(A) .=
n∑

i=K+1

IA(xi)I{y}(xi−K:i−1)ϕ(xi−1)
λϕ,n,y

νϕ,n,y(A) .=
1

λϕ,n,y

n∑

i=K+1

E[IA(Xi)|Xi−1 = xi−1]×

×I{y}(xi−K:i−1)ϕ(xi−1)

where IA is the {0, 1}-valued indicator function of the
event A and λϕ,n,y

.=
∑n

i=K+1 I{y}(xi−K:i−1)ϕ(xi−1).

νϕ,n(.|y) can be rewritten in terms of the instrumental
understanding as:

νϕ,n,y(A) .=
1

λϕ,n,y

n∑

i=K+1

νi(A)I{y}(xi−K:i−1)ϕ(xi−1)

A rule ϕ applied to xn is said to be conditionally cau-
sally faithful if ∀y ∈ XK , d(νϕ,n,y, µϕ,n,y) is small.
Essentially, ϕ is conditionally faithful if it does not
extract an arbitrary pattern. The existence of such
rules is shown by the following theorem.

Theorem 3.2: Let ξ be the cardinality of X and de-
note the cardinality of Ψ by ||Ψ||. Let m ≤ n. If
||Ψ|| ≤ t, then for any process measure P ∈M∗

|K and
y ∈ XK :

P (max
ϕ∈Ψ

{d(µϕ,n,y, νϕ,n,y) : λϕ,n,y ≥ m} ≥ ε) ≤

≤ 2ξt exp{ −ε2m2

2(n−K)
}

Proof: Follows immediately from Theorem 1 of Fie-
rens and Fine 2003 [4], considering

I{y}(xi−K:i−1)ϕ(xi−1)

to be a selection rule, ϕ′(xi−1), for the original se-
quence xn.

Note that, as long as the size of the family of selection
rules is not too big, conditional faithfulness is guaran-
teed with high probability if the subsequence selected is



long enough. Note that the restriction on the size of
Ψ is necessary, since if we allow all possible selection
rules, we will get all the measures giving probability
1 to each one of the elements of the sample space X .

Note also that, if we take m = α(n−K), for α ∈ (0, 1),
the size t of the family of selection rules can be as large
as eρ(n−K), for ρ < α2ε2

2 ; conditional faithfulness of
the rules is guaranteed with high probability for large
n.

3.2 Conditional Visibility and Estimation

The property that a set of rules, Ψ, must satisfy in
order to expose all of M|K(y), ∀y ∈ XK , is given by
the following definition:

Definition 3.3: (Conditional Visibility) M|K is
conditionally made visible (Ψ, θ, δ,m, n) by
P ∈M∗

|K if ∀y ∈ XK :

P (
⋂

ν∈M|K(y)

⋃

ϕ∈Ψ

{Xn : λϕ,n,y ≥ m,

d(ν, µϕ,n,y) ≤ θ}) ≥ 1− δ

Let M̂θ,Ψ,y
|K be an estimator of M|K(y) defined by:

∀xn ∈ X ∗, M̂θ,Ψ,y
|K (xn) =

⋃

ϕ∈Ψ:λϕ,n,y≥m

B(θ, µϕ,n,y)

where, B(θ, µϕ,n) .= {µ ∈ P : d(µ, µϕ,n) < θ}.
Let [A]ε denote the ε-enlargement of a set A defined
by:

(∀A ⊆ P)(∀ε > 0)[A]ε .= {µ : (∃µ′ ∈ A)d(µ, µ′) < ε)}

The next theorem shows that for an appropriate set
of rules Ψ, it is possible to conditionally expose M|K .

Theorem 3.4: (Estimability) Let P render M|K
conditionally visible (Ψ, θ, δ,m, n). Then, ∀y ∈ XK :

P [[ch(M|K(y))]θ+ε ⊃ M̂θ,Ψ,y
|K ⊃M|K(y)] ≥ 1−δ−τn

where τn = 2ξ||Ψ|| exp( −ε2m2

2(n−K) ) and ch(M) is the
convex hull of M.

Proof: Follows immediately from Theorem 3 of Fie-
rens and Fine 2003 [4] and Theorem 3.2 above, consi-
dering each fixed y ∈ XK .

3.3 Conditional Homogeneity

There are some families of causal subsequence selec-
tion rules that are too simple to expose the structure
underlying the conditional chaotic probability model,
such families have the following property:

Definition 3.5: (Conditional Homogeneity) P ∈
M∗

|K is conditionally homogeneous (Ψ, θ, δ,m, n)
if ∀y ∈ XK :

P ( max
ϕ1,ϕ2∈Ψ

{d(µϕ1,n,y, µϕ2,n,y) :

λϕ1,n,y, λϕ2,n,y ≥ m} ≤ θ) ≥ 1− δ

3.4 Consistency Between Conditional
Visibility and Conditional Homogeneity

Theorem 3.6: (Consistency) Let ε > 1/m. As-
sume that ∀y ∈ XK , there is an ε-cover of M|K(y)
by Nε(y) open balls with centers in a set Mε(y) .=
{µy

1, µ
y
2, ..., µ

y
Nε(y)} such that, for each µy

i , there is a
recursive probability measure ν ∈ B(ε, µy

i ) ∩M|K(y).
Let Ψ0 be a set of causal subsequence selection rules.
Assume also:

p
.= inf

ν∈∪y∈XKM|K(y)
min
z∈X

ν(z) > 0

Then, there are a process measure P and a family
Ψ1 such that, for large enough n, P will both render
M|K conditionally visible (Ψ1, 3ε, δ,m, n) and ensure
conditional homogeneity (Ψ0, 6ε, δ,m, n) with

δ = 2(ξtn + 1) exp(
−ε2m2

2(n−K)
)

where tn = max{||Ψ0||, ||Ψ1||}

Proof: It follows closely proofs contained in the Ap-
pendix C and D of [2]; we omit details here.

The importance of this result is that there are con-
ditional chaotic sources for which analysis by simple
selection rules would give us the impression that the
phenomena can be modeled by a standard probability
model (indeed, it will look like a Markov chain where
the set of states is XK). But if we further analyze the
source with a set of more complex selection functions
we can expose the underlying structure of the model.
In this way, as pointed out by Fierens and Fine 2003,
the family of causal subsequence selection rules deter-
mines the power of the resolution of the model we see.

3.5 Fierens and Fine’s Approach to
Conditioning

Fierens and Fine 2003 [2] also provided a model for
Conditional Chaotic Probabilities, where the condi-
tioning events are the previous K outcomes in the
sequence. In their approach, they define

P|K = {ν : (∀A ⊆ X )

ν(A,XK) = Eµ(IA(XK+1)|XK), µ ∈ PK+1}.



For them, a conditional chaotic probability model
M|K is any subset of P|K . They also provide an ins-
trumental understanding of the model, by defining
a selection function F : X ∗ → M|K . It is easy to
see that there is a one-to-one correspondence between
their model and the one presented here. Given M|K ,
a conditional chaotic probability model according to
our definition is given by:

M|K(y) = {µ ∈ P : ∀z ∈ X , µ(z) = ν(z,XK = y),

ν ∈ M|K}, ∀y ∈ XK .

For the converse, given M|K , a conditional chaotic
probability model according to Fierens and Fine’s de-
finition is given by:

M|K(y) = {ν ∈ P|K : ∃y ∈ XK , ∀z ∈ X ,

ν(z, XK = y) = µ(z), µ ∈M|K(y)}.

The major difference between both approaches is the
estimation procedure; the set of subsequence selec-
tion rules Fierens and Fine allow for estimating the
conditional chaotic probability model is a subset of
the set we allow. Unlike us, for each fixed sequence
of K outcomes y, Fierens and Fine analyze the sub-
sequence xy,n of xn, that is formed by all terms in
xn whose previous K outcomes are equal to y, using
causal subsequence selection rules that depend only
on past terms that appear in xy,n, not on all past
terms of the whole original sequence xn, as we do in
our approach. As the chaotic selection function both
in their approach and in ours is allowed to depend on
all past symbols of the sequence xn, we believe that
it is more appropriate to allow the more general set
of selection rules we allow.

Although Fierens and Fine were able to prove results
analogous to Theorems 3.2, 3.4, and 3.6 using their
restricted set of selection rules, they did not provide
a procedure for finding a family of selection rules Ψ
that renders M|K conditionally visible. We will now
extend the result of Rêgo and Fine 2005 [12] providing
a procedure for finding a family of selection rules Ψ
that renders M|K conditionally visible. In the next
section, we provide a methodology for finding such a
family of rules Ψ that works for any conditional chao-
tic probability source, and we call it a universal family
of selection rules. As we see in the next section, for
finding such a universal family it is crucial that we al-
low the more general set of subsequence selection rules
that depend on the whole past terms in the sequence
xn. Unfortunately, as in the univariate case, such a
family may “extract” more than ∪y∈XKM|K(y). We
return to this point in Section 5.

4 Universal Family of Selection Rules

In this section we prove that there exists a universal
family, which depends basically on the precision we
want our estimator to have, that is able to conditio-
nally expose all measures of any set of probabilities
M|K .

Let λy,n
.=

∑n
i=K+1 I{y}(xi−K:i−1).

Define for each family of causal selection rules, Ψ, and
each y ∈ XK the estimator based on this family as:

M̂Ψ,y
|K

.= {µϕ,n,y : ϕ ∈ Ψ, λy,n ≥ m0, λϕ,n,y ≥ m}

Approximate F (xj−1) by Fε(xj−1) = µj if µj is the
closest measure to F (xj−1) among all µi’s that be-
longs to Mε(xj−K:j−1). Let Fε,n be the restriction of
Fε to X 1:n (all sequences of length not greater than n).
The following theorem provides the desired method of
finding a universal family of selection rules for condi-
tional chaotic probability sources.

Intuitively, Theorem 4.1 states that as long as the
Kolmogorov Complexity [10] of the conditional cha-
otic measure selection function is not too high, and
we have a long enough data sequence, then for every
given sequence y ∈ XK of past K symbols that ap-
peared frequently enough, we are able to make visible
with high probability all measures in M|K(y) that
were selected frequently enough in the sequence.

Theorem 4.1: Choose f, f0 ≥ 1, α0 = (f0ξ
K)−1,

α = (fNε)−1 and let m0 = α0(n − K) and m =
αλy,n. Define Mf

|K(y) .= {ν : ν ∈ M|K(y) and ∃µi ∈
Mε(y) such that d(ν, µi) < ε and µi is selected at
least m times by Fε,n when the previous K outcomes
were equal to y and λy,n ≥ m0 }. Given β smaller
than α2

0α2ε2

2 , choose ε′ ∈ (0, β log2 e) and assume the
Kolmogorov complexity, K(Fε,n), of Fε,n satisfies the
following condition:

∃κ ≥ 0, ∃Lε′,κ such that ∀n ≥ Lε′,κ,

K(Fε,n)
n

< β log2 e +
κ log2 n

n
− ε′ (3)

Define M∗
|K,R

.= {P : P ∈ M∗
|K and the corres-

ponding F satisfies condition (3)}. Then, for n >

max{Lε′,κ, 2dlog2 Qεe
ε′ }, there exists a family of causal

subsequence selection rules ΨU , depending only on α0,
α, κ and ε, such that ∀M|K , and ∀P ∈M∗

|K,R:

P (
⋂

y∈XK

{Xn : [ch(M|K(y))]4ε ⊃

[M̂ΨU ,y
|K ]3ε ⊃Mf

|K(y)}) ≥ 1− δ,



where γ = α2
0α2ε2

2 −β and δ = 2ξK+1nκeα2
0α2ε2Ke−γn.

Remark 4.2: Note that if λy,n < m0, then by
definition we have M̂ΨU ,y

|K = Mf
|K(y) = ∅. Thus, we

fail to estimate M|K(y) in this case. But the fraction
of times a string of outcomes y ∈ XK such that λy,n <
m0 appears in a sequence Xn is bounded from above
by (1/f0). Therefore, for f0 sufficiently large it is
reasonable to expect that such measures may not be
estimated.

Remark 4.3: Note also that if λy,n ≥ m0, then
the fraction of times a measure in M|K(y) \Mf

|K(y)
is used to generate an outcome in a sequence Xn is
bounded from above by (1/f). Therefore, for f suffi-
ciently large it is reasonable to expect that such me-
asures may not be estimated.

Proof: Define a family of selection functions, ΨG,
that corresponds to Fε,n as follows: ΨG = {ϕG

i , for
1 ≤ i ≤ Nε}, where, for 0 ≤ j ≤ n− 1:

ϕG
i (xj) .=

{
1 if Fε,n(xj) = µi

0 otherwise. (4)

As each ϕG
i is a function of Fε,n and µi, and dlog2 Qεe

is an upper bound on the number of bits necessary to
specify the index i of the particular measure µi, the
Kolmogorov complexity, K(ϕG

i ), of ϕG
i satisfies:

max
i

K(ϕG
i ) ≤ K(Fε,n) + dlog2 Qεe (5)

It then follows, from our hypothesis, that for 1 ≤
i ≤ Nε and ∀n ≥ Lε′,κ, K(ϕG

i ) satisfies the following
condition:

K(ϕG
i )

n
< β log2 e +

κ log2 n

n
− ε′ +

dlog2 Qεe
n

Therefore, for n > max(Lε′,κ, 2dlog2 Qεe
ε′ ):

K(ϕG
i )

n
< β log2 e +

κ log2 n

n
− ε′

2

Let ΨU consist of all rules of Kolmogorov complexity
less than or equal to βn log2 e + κ log2 n − 1. Note
that since for n > max{Lε′,κ, 2dlog2 Qεe

ε′ }, nε′
2 > 1, so

ΨU includes ΨG for n large enough.

As ||ΨU || ≤ 2nβ log2 e+κ log2 n = nκeβn, m0 = α0(n −
K), m = αλy,n and γ = α2

0α2ε2

2 −β > 0, by the causal
faithfulness theorem, for any P ∈M∗

|K ,

P (Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} ≥ ε) =
= P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ αλy,n} ≥ ε) ≤
≤ P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ αm0} ≥ ε) ≤
≤ P (Xn : max

y∈XK
max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λϕ,n,y ≥ α0α(n−K)} ≥ ε) ≤

≤ 2ξK+1nκe
α2
0α2ε2K

2 e−γn

Note that, since for α0 = (f0ξ
K)−1, for all Xn, there

exists y such that λy,n ≥ m0. And for α = (fN−1
ε ),

we know that for all Xn and for all y, there exists i
such that λϕG

i
,n,y ≥ m, as ΨG ⊂ ΨU , we have that for

all Xn the maximum above is taken over a non-empty
set.

To prove the theorem, let ϕG
i be as defined in Equa-

tion (4), then for a fixed Xn, by definition of Mf
|K(y),

∀ν ∈ Mf
|K(y), ∃µi ∈ Mε(y) such that d(ν, µi) < ε,

λϕG
i

,n,y ≥ m and λy,n ≥ m0 (Note the index i depends
on Xn). Then, using the triangle inequality property:

max
y∈XK

sup
ν∈Mf

|K(y)

d(ν, µϕG
i

,n,y) ≤

max
y∈XK

sup
ν∈Mf

|K(y)

d(µϕG
i

,n,y, νϕG
i

,n,y) +

max
y∈XK

sup
ν∈Mf

|K(y)

d(νϕG
i

,n,y, µi) +

max
y∈XK

sup
ν∈Mf

|K(y)

d(µi, ν)

and since νϕG
i

,n,y is the time average of the ac-
tual measures selected by F in the ball B(ε, µi),
d(νϕG

i
,n,y, µi) < ε, and as ΨG ⊂ ΨU , the following

holds,

{Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} < ε} ⊂
{Xn : max

y∈XK
sup

ν∈Mf

|K(y)

min
ϕ∈ΨU

{d(ν, µϕ,n,y) :

λy,n ≥ m0, λϕ,n,y ≥ m} < 3ε}. (6)

Equation 6 implies,

{Xn : max
y∈XK

max
ϕ∈ΨU

{d(µϕ,n,y, νϕ,n,y) :

λϕ,n,y ≥ m} < ε} ⊂



{
⋂

y∈XK

{Xn :

[ch(M|K(y))]4ε ⊃ [M̂ΨU ,y
|K ]3ε ⊃Mf

|K(y)}} (7)

Theorem 4.1 follows from the causal faithfulness The-
orem 3.2.

The problem with the sort of estimator provided by
the above theorem is that on one hand it is able to
conditionally expose all measures in M|K(y) that ap-
peared frequently enough in the process, if y also ap-
peared frequently enough in the outcomes. On the
other hand, we have that for each y ∈ XK that ap-
peared frequently enough, the estimator is only gua-
ranteed to be included in an enlarged neighborhood
of M|K(y)’s convex hull and in some cases this can
be rather larger than M|K(y).

The following section proves a theorem that given xn

provides a methodology for finding a universal family
of subsequences, Ψ(xn), that is both able to conditi-
onally expose all measures in M|K(y) that appeared
frequently enough in the process, if y appeared fre-
quently enough, and contains only these subsequen-
ces whose empirical time averages are close enough
to M|K(y) with high probability. We will call this
family to be conditionally strictly faithful.

5 Conditionally Strictly Faithful
Family of Subsequences

In this section, we propose a methodology for finding
a conditionally strictly faithful family of subsequen-
ces that can both conditionally expose all measures
in M|K(y) that appear frequently enough in the pro-
cess, if y appears frequently enough; and contains only
these subsequences whose empirical time averages are
close enough to M|K(y) with high probability.

The problem with the set of rules ΨU is that it may
contain rules that are not conditionally homogeneous,
i.e., rules that given that the previous outcomes are
equal to y select subsequences generated by mixtures
of measures µi’s. In our proposed methodology in this
section, we will analyze each rule ϕ ∈ ΨU with a uni-
versal family Ψϕ

U (see definition below) and include
ϕ in Ψ(xn) only if it is conditionally homogeneous.
As Ψϕ

U is universal for the subsequence selected by ϕ,
it will be able to identify if it is or not conditionally
homogeneous with high probability. Thus, our family
of sequences Ψ(xn) is constructed in a two-stage pro-
cess: first we consider the family of selection rules ΨU

which consists of all rules of at most a certain comple-
xity value which is able to make M|K conditionally
visible; then we filter the rules contained in ΨU so

that it contains only conditionally homogenous sub-
sequences whose relative frequencies are close enough
to a measure in ∪y∈XKM|K(y).

The following theorem proves the desired result, i.e., if
the Kolmogorov complexity of the conditional chaotic
measure selection function is not too high and we have
a long enough data sequence, with high probability we
can conditionally make visible all and only measures
that were used frequently enough in the sequence.

Theorem 5.1: Choose f0, f ≥ 1, α0 = (f0ξ
K)−1,

α1 = (fNε)−1, α2 = N−1
ε and let m0 = α0(n − K),

m = α1λy,n. Define Mf
|K(y) .= {ν : ν ∈ M|K(y)

and ∃µi ∈ Mε(y) such that d(ν, µi) < ε and µi is
selected at least m times by Fε,n when the previous K
outcomes were equal to y and λy,n ≥ m0} and define
Mf

ε (y) .= {µi : µi ∈ Mε(y) and µi is selected at
least α2m times by Fε,n when the previous K outcomes
were equal to y and λy,n ≥ m0 }. Given β smaller
than α2

0α2
1α2

2ε2

2 , choose ε′ ∈ (0, β log2 e) and assume
the Kolmogorov complexity, K(Fε,n), of Fε,n satisfies
the same condition (3), i.e.,:

∃κ ≥ 0, ∃Lε′,κ such that ∀n ≥ Lε′,κ,

K(Fε,n)
n

< β log2 e +
κ log2 n

n
− ε′

Define M∗
|K,R

.= {P : P ∈ M∗
|K and the corres-

ponding F satisfies condition (3)}. Then, for n >

max{Lε′,κ, 2dlog2 Qεe
ε′ }, for each xn, there exists a fa-

mily of subsequences Ψ(xn), depending only on α0,
α1, α2, κ and ε, such that ∀M|K and ∀P ∈M∗

|K,R:3

P ({Xn : max
y∈XK

sup
µ∈Mf

|K(y)

min
ν∈M̂Ψ(Xn),y

|K

d(µ, ν) < 3ε}

∩{Xn : max
y∈XK

max
ν∈M̂Ψ(Xn),y

|K

min
µ∈Mf

ε (y)
d(µ, ν) < 6ε})

≥ 1− δ1

where γ1 = α2
0α2

1α2
2ε2

2 − β, Sε
.= min{Qε, n

κeβn} and

δ1 = 4ξK+1Sεn
κe

α2
0α2

1α2
2ε2K

2 e−γ1n.

Proof: It follows closely the proof of Theorem 3 con-
tained in the appendix of [12]; we omit details here.

3If Ψ(Xn) = ∅, we adopt the following convention:

max
y∈XK

sup
µ∈Mf

|K(y)

min
ν∈M̂∅,y

|K

d(µ, ν) = ∞

and
max

y∈XK
max

ν∈M̂∅,y

|K

min
µ∈Mf

ε (y)

d(µ, ν) = 0.



6 Interpretation as Generalized
Markov Chain

The conditional chaotic probability model studied in
this paper can be given the interpretation of a gene-
ralized Markov chain (GMC). The difference from the
standard Markov chain is that the transition proba-
bilities are given by sets of probability measures ins-
tead of single probabilities. Therefore, consider the
following definitions of the parameters of the GMC:

• States: There are ξK states, one state for each
y ∈ XK .

• Initial Probabilities: They are given by the
initial probability of the first K symbols of the
sequence, µF ∈ PK .

• Transition Set of Probabilities:

M|K(yi+1|yi)
.=





{ν(yi+1(K)) : ν ∈M|K(yi)},
if yi(l + 1) = yi+1(l),
for 1 ≤ l ≤ K − 1

{0}, otherwise.

where yi(l) is the l-th position of the i-th state
of the GMC.

Although this GMC looks like a partially specified
Markov chain, they differ in the fact that in the GMC
there is no single underlying “true” transition proba-
bility as in the partially specified Markov chain.

As pointed out by an anonymous referee, we must
take care with the interpretation of the conditional
chaotic probability model as a GMC. On one hand,
usually a Markov chain describes a random phenome-
non without memory. On the other hand, the instru-
mental interpretation of the conditional chaotic pro-
bability model proposed is sensible to the initial con-
ditions of the realization of the random experiment;
each initial condition determines a unique process P
as defined in (2). As argued in Section 2.1, the issue
is that P does not reflect the reality of the underlying
phenomena. In a chaotic probability model, all that
can be learnt and used to predict the next outcome
in the sequence is M|K(y) for each y ∈ XK , i.e., the
transition set of probabilities of the GMC. Thus, a
GMC is memoryless in the sense that once one knows
the transition set of probabilities of the GMC all that
we can learn and use to predict about the distribution
of the next outcome in the sequence is given by the
present state y ∈ XK of the GMC, and it is chaotic in
the sense that given that the present state is y ∈ XK

which measure will actually produce the next outcome
varies unpredictably while remaining in M|K(y).

7 Conclusions and Future Work

For ease of exposition, in this paper we focused on the
case of conditioning on the previous K outcomes. It
is easy to see that the results presented can be easily
generalized to conditioning on a family of selection
rules Φ such that ∃L < n− 1 such that the following
two conditions hold:

1. ∀φ1, φ2 ∈ Φ, φ1 6= φ2 implies φ1(xi) · φ2(xi) =
0, L < i ≤ n− 1

2.
∑

φ∈Φ φ(xi) = 1, L < i < n

The development of chaotic probability theory is an
important conceptual achievement, since it will pro-
vide us with a more powerful and general tool for
analyzing time series. With the increasing size and
number of data sets available nowadays, a different
way of looking at them, provided by this theory, can
have a huge impact in our world.

Although we do not have analyzed any practical real
world data supporting the model, the main mathema-
tical tools that enhance our capability of recognizing
such phenomena (since we believe that we are only
likely to find what we expect to see) have been pre-
sented. Therefore, new concepts of probability are
likely to open our perception and understanding of
chance phenomena.

To further develop the chaotic probability theory, a
method to evaluate self-consistency of simulation and
estimation needs to be studied (for details, see Fierens
and Fine 2003 [2] [4]). Also, implications of this the-
ory for inference and decision making problems have
to be investigated.

In a broader perspective, the possibility of modeling
physical chance phenomena with a set of measures,
raises the question about the existence of other phy-
sical quantities that have properties that cannot be
quantified by a single real number, but only as a set
of them.
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