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Abstract

An agent has Hurwicz criterion with pessimism-
optimism index α under imprecise risk and adopts
the root dictatorship version of McClennen’s Reso-
lute Choice in sequential decision situations, i.e. eval-
uates strategies at the root of the decision tree by the
Hurwicz criterion and enforces the best strategy, thus
behaving in a dynamically consistent manner. We
address two questions raised by this type of behav-
ior: (i) is information processed correctly? and (ii)
to what extent do unrealized outcomes influence de-
cisions (non-consequentialism)? Partial answers are
provided by studying: (i) the random sampling of
a binary variable, and finding the influence of the
pessimism-optimism index to be decreasing with the
sample size, and the optimal decision rule to asymp-
totically only depend on the relative frequencies ob-
served; and (ii) an insurance problem in which the
agent chooses his coverage at period two after observ-
ing the period one outcome (accident or no accident);
when no accident happened, a seemingly irrelevant
data - the first period deductible level- is found to be
able to influence the second period insurance choice.
We analyse this result in relation with the existence
and value of the pessimism-optimism degree.

Keywords. Imprecise risk, Hurwicz criterion, reso-
lute choice, non-consequentialism, learning

1 Introduction

This paper deals with the impact of information on
the decisions of an agent whose beliefs concerning the
events are imprecise and whose preferences are not
in accordance with the Subjective Expected Utility
(SEU) model. Precisely, we assume that preferences
are representable by the Hurwicz criterion: the value
of a decision is a weighted sum of its lowest possi-
ble expected value (pessimistic evaluation) and of its
highest one (optimistic evaluation).

It is well known that a SEU maximizer has dynam-
ically consistent preferences: future decisions which
seem the best today will still be judged the best to-
morrow; this justifies the determination of the op-
timal strategy by backward induction (sophisticated
choice). Preferences as modelled by the Hurwicz crite-
rion no longer verify this consistency property. Thus,
sophisticated choice no longer guarantees a rational
behavior: the selected strategy may well be domi-
nated.

An alternative to sophisticated choice which ensures
rationality is the version of McClennen’s Resolute
Choice (1990) where the best strategy at the root
is continued at every node (root dictatorship). We
adopt this model here: strategies are evaluated at the
root of the decision tree by the Hurwicz criterion; the
enforcement of the best strategy all along the tree au-
tomatically guarantees dynamic consistency.

The use of Resolute Choice in an imprecise probabil-
ity environment raises a first important question: is
information processed correctly in this model? The
existence of phenomena such as dilation (ambiguity
increase with new information, cf. Seidenfeld, Wasser-
man (1993)) makes the answer unclear. We provide
a positive answer in a particular case by considering
a situation where data are provided by the random
sampling of a binary variable and decisions are bets
on future values of that variable. This decision prob-
lem is closely related to simple hypothesis testing.

Optimal decision rules turn out to be based on ob-
served frequencies (just as likelihood ratio tests) and
the influence of the degree of pessimism fades progres-
sively when samples become larger.

A distinctive, controversial feature of Resolute Choice
is non-consequentialism: decisions may depend on
seemingly irrelevant data such as unrealized out-
comes. Since this is a theoretical result, the question
arises whether this phenomenon is widespread in real
world decision problems or not. As a first field of



investigation, we have chosen multi-period insurance
contracting which constitutes an active research do-
main (Dionne, Doherty, Fombaron 2000). In this do-
main, up to now, the environment has invariably been
described as a situation of risk (subjective or frequen-
tist probabilities) and the model used is EU theory.
However, for some risks, due to lacking or conflict-
ing data, this assumption is highly irrealistic which
is our justification for introducing imprecise risk in
the case of a two-period insurance problem in which
an individual has to chose his coverage for the sec-
ond period after observing the first period outcome
(loss, no loss). We apply Hurwicz’s criterion together
with a Resolute Choice behavior and determine to
which extent unrealized outcomes influence optimal
decisions. It turns out that such an influence indeed
exists but only to a limited extent and for individuals
who are neither extremely pessimistic, nor extremely
optimistic.

2 Dynamic decision making in

imprecise probabilities framework

2.1 Imprecise Risk

When facing common, general or personal, hazards,
and in particular insurable hazards, most agents do
not have a precise idea of their likelihoods. Statistics
may be inexistent, unavailable or just neglected by the
agent; also, important individual variations can exist.
Thus, whatever the reasons, an agent may prove to be
unable to ascribe specific probabilities to the relevant
events in a significant manner.

On the other hand, he may feel more comfortable with
associating with each event E a probability interval,
[P−(E), P+(E)] ; for instance, typical intervals would
be: [0.01, 0.10] for an event he considers as ”very un-
likely to happen but not impossible”; [0.10, 0.30] for
an event he judges ”rather unlikely to happen”; and
their union [0.01, 0.30] for an event he just thinks ”un-
likely to happen”.

If the agent moreover believes that there is a true
probability P0 on the events (which he is just not
able to identify), these judgments are submitted to
consistency rules, such as P+(E) ≥ 1 − P+(Ec) for
complementary events E and Ec; this circumscribes
P0 to P = {P : for all E, P (E) ∈ [P−(E), P+(E)]},
a subset of L, set of all probabilities on the event set.

Such an agent uses an imprecise probability represen-
tation of uncertainty and, accordingly, makes deci-
sions under imprecise risk.

2.2 The Hurwicz decision criterion

Various theories have been proposed for modelling de-
cision making under imprecise risk. The most popular
one (but not the only one, see § 2.3.4.) combines ex-
isting theories applying to the limiting cases of risk
and complete ignorance.

(i) Under risk, the standard criterion is Expected Util-
ity (EU). A decision maker (DM), believing the true
probability to be P0, ascribes to a decision δ value

UP0
(δ) = EP0

u (δ) =
∑

x u(x)P0(δ
−1(x))

i.e., the expectation of the utilities of the outcomes
x that δ may bring about depending on which event
δ−1(x) obtains;

(ii) Under complete ignorance, Hurwicz’s criterion,
proposed as early as 1951, ascribes to a decision δ
a value which is a weighted sum of its worst and best
possible outcomes, αmδ + (1 − α)Mδ; parameter α
being interpreted as a degree of pessimism.

Suppose now that complete ignorance prevails in P
and consider a DM for whom being only able to locate
probability P0 in a set P amounts to being uncertain
about which of the values UP (δ), P in P , is the cor-
rect one. Then, this DM will look at the worse and
best possible evaluations and, according to its degree
of pessimism, will put more or less weight on the for-
mer or the later, which is expressed by the following
formula:

V (δ) = α inf
P∈P

EP u (δ) + (1 − α) sup
P∈P

EP u (δ) (1)

This criterion being the natural extension of the Hur-
wicz one to imprecise risk, we will preserve its de-
nomination of ”Hurwicz criterion”. In a decision
making context, the interest of a preference model
depends crucially on its ability to induce economi-
cally rational behavior, which includes invulnerabil-
ity to Dutch books and money-pumps (Schick 1986,
Diecidue, Wakker 2002) in situations involving se-
quential choices. Obviously, economic rationality can-
not be guaranteed by a criterion which does not in-
crease with dominance - is not monotone - in some
sense.

Under suitable topological assumptions (P a com-
pact subset of a separable space), Hurwicz’s criterion
satisfies strict and weak monotonicity properties. If
the expected utility of decision δ is strictly higher
than that of decision d for every probability mea-
sure, i.e., EP u (δ) > EP u(d) for all P ∈ P (strict
pointwise dominance on P), then infP∈P EP u (δ) >
infP∈P EP u (d) , supP∈P EP u (δ) > supP∈P EP u (d) ,



and finally V (δ) > V (d) ; moreover, the weaker re-
lation, EP u (δ) ≥ EP u(d) for all P ∈ P , implies
V (δ) ≥ V (d) . In particular, if decision δ performs
strictly better (resp. better) than decision d whatever
happens, i.e., u(δ(e)) > (≥) u(d(e)) for every event e
on which both δ and d are constant, then EP u (δ) >
(≥) EP u(d) for all P ∈ P , hence V (δ) > (≥) V (d) .

On the other hand, if EP u (δ) ≥ EP u(d)
for all P ∈ P , with EP u (δ) > EP u(d)
for some P ∈ P , it may none- theless hap-
pen that infP∈P EP u (δ) = infP∈P EP u (d) and
supP∈P EP u (δ) = supP∈P EP u (d), hence that
V (δ) = V (d) ; in particular, u(δ(e)) ≥ u(d(e)) for
every e, plus u(δ(e)) > u(d(e)) for some e, do not im-
ply V (δ) > V (d) . Note however that for every ε > 0,
V (δ) > V (d − ε) and V (δ + ε) > V (d) will hold;
thus, although not monotone, Hurwicz’s criterion is,
in a straightforward sense, ε−monotone.

These monotonicity properties are sufficient to make
the model behave satisfactorily in one-shot decision
problems. Multiple decision situations are a different
matter, as illustrated in the following subsection.

2.3 Problems with dynamic decision making

and the Resolute Choice solution

2.3.1 An illustrative example

Consider a DM who at time 1 (node A of the decision
tree in Fig.1) has to choose between two decisions,
Up1 and Down1 ; then, at time 2 (node B), provided
he has chosen Up1 and event E obtains, he has again
a choice, Up2 or Down2, his gain further depending
on the realization or not of some events, G or Gc

and H or Hc; if at time 1 he has chosen Up1 and
event Ec obtains, or has chosen Down1, there is no
other choice to make. Gains are indicated next to the
corresponding leaves of the tree.
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Figure 1: Dynamically inconsistent preferences

The DM’s criterion is Hurwicz’s, with the same pa-
rameters u and α, at both decision nodes, A and B.
For the sake of simplicity we assume α = 1/2, risk-

neutrality (u(x) = 2x for all x), and complete igno-
rance on the algebra of events generated by E, G and
H ; thus, P = L and a strategy (at A), as well as a
substrategy (at B), δ, giving outcomes δ(e) on events
e has value V (δ) = infe δ(e)+ supe δ(e).

At node A, the values of the three available strategies,
(Up1, Up2), (Up1, Down2), and Down1 ( (Up1, Up2)
means Up1 at node A; then Up2 at node B if E
happens; etc.) are, respectively, V (Up1, Up2) =
20; V (Up1, Down2) = 25; V (Down1) = 0; thus the
DM prefers (Up1, Down2) to (Up1, Up2) (and to
Down1) in A.

However at node B he prefers substrategy (decision)
Up2 to substrategy Down2 since V (Up2) = 30 >
V (Down2) = 25 ; thus, if he takes decision Up1 in
A and event E happens, then, once arrived in B, he
no longer considers Down2 to be the best feasible ac-
tion; his preferences are not dynamically consistent.

2.3.2 Resolute Choice

What are the decisions actually made by a DM with
a logical mind, who is able to anticipate on his fu-
ture actions (sophistication, as opposed to myopia),
and is aware that his preferences are not dynamically
consistent? Roughly, one can think of two different
patterns of behavior.

(i) If his future choices are always dictated by his fu-
ture preferences, then the DM should use backward
induction in the decision tree: at each given deci-
sion node, knowing which substrategies would be trig-
gered by each of his feasible actions, he can evaluate
and compare them, according to his criterion, and
choose the best available action. Coping locally in
that way with his preferential inconsistencies unfor-
tunately does not warrant him at the end (when ar-
rived at the root of the tree) the selection of a strategy
possessing a valuable global property. Indeed, going
back to the example, the DM would be willing to pay
up to 5 units to have the tree pruned and edge Up2

suppressed in B. Consider then the augmented tree in
which a new subtree offers this possibility to the DM;
strategy (Up1, Down2), which is still materially feasi-
ble, clearly strictly dominates the additional strategy,
which is nonetheless chosen by the backward induc-
tion procedure. In general, the use of that behavioral
procedure is always a potential source of unnecessary
waste: it is not economically rational.

How can any waste be avoided? There is a straight-
forward way:

(ii) If the strategy which is judged best according to
preferences at the root node is actually played, then,
the criterion being used only once as in one-shot deci-



sion problems, the monotonicity of Hurwicz’s criterion
guarantees economic rationality. This dictatorship of
the root node preferences means of course that future
choices do not have to bear any relation with future
preferences. More generally and less drastically, Res-
olute Choice (McClennen, 1990, p.260) only requires
the achievement of a compromise strategy reflecting
both present and future preferences; in McClennen’s
terms: ”the theory of resolute choice is predicated on
the notion that the single agent who is faced with
making decisions over time can achieve a cooperative
arrangement between his present self and his relevant
future selves that satisfies the principle of intraper-
sonal optimality”. Resolute Choice is not just a the-
oretical construct; it can be implemented in an oper-
ational way (see Jaffray-Nielsen 2006).

2.3.3 Non-consequentialism and unrealized

outcomes

A feature of Resolute Choice is non-consequentialism:
the choice at a given decision node, being induced by a
strategy which depends on all the data in the decision
tree, may in particular depend on those data which
are outside the subtree rooted at that node; these
elements are known as unrealized outcomes.

In Fig.1, if the best strategy in A, (Up1, Down2), can
be imposed, Down2 is played in B. Modify now a sin-
gle outcome, at the leaf following Up1 and Ec, by
changing 0 into 10; the best strategy in A is now
(Up1, Up2) and Up2 is played in B accordingly; thus
the action taken in B depends on a unrealized out-
come, the outcome at a leaf that is not part of the
subtree rooted at B.

For an illuminating discussion of consequentialism see
Machina (1989). Let us just note for the moment
that, since, as seen above, economic rationality cannot
provide arguments against non-consequentialism, any
defense of consequentialism must rely on a different
conception of rationality.

2.3.4 Alternative approaches

Resolute Choice should not be confused with conse-
quentialist approaches to dynamic decision making,
which have recourse to recursive models (see e.g. Ep-
stein, Schneider 2003 ); such models are straightfor-
wardly dynamically consistent and backward induc-
tion remains valid; on the other hand, economic ra-
tionality is not necessarily satisfied. Neither is it in
the non-consequentialist approach, preserving a weak
form od dynamic consistency of Hanany, Klibanoff
(2006).

Another approach to dynamic decision making un-
der uncertainty, called E-admissibility, has been sug-

gested by Levi (1974) and discussed by Seidenfeld
(2004). It works by first selecting all the last stage
Bayes rules and then moving backwards repeating this
selection stage by stage. In order to uniquely select a
strategy in the remaining set, a secondary criterion,
applied at the root node, is used. While more discrim-
inating than Resolute Choice with root dictatorship,
E-admissibility (with a suitable secondary criterion)
still guarantees normative qualities such as nonnega-
tive value of information.

Note that E-admissibility is a non-consequentialist so-
lution in general. However, de Cooman and Troffaes
(2005) prove the validity of dynamic programming
(which amounts to consequentialism) in the partic-
ular case of sequential decision making in the absence
of conditional decisions.

3 Learning with Resolute Choice

An urn contains red and black balls; the proportion of
red balls is either p− or p+, where 0 < p− < p+ < 1.
The DM is told that: n + 1 balls are going to be
drawn one by one from the urn, with replacement;
that he can make bets on the color of the (n + 1)th

being red; and that his decision of betting or not can
be conditioned on the outcome of the n first draws.
When betting, his stake is m and he will receive gain

M if the (n + 1)th is red. We assume p− <
m

M
< p+.

The DM conditions his bets on the outcomes of the
n first draws by just specifying a betting rule Kn ⊆
{0, 1, .., n} , ”k ∈ Kn” meaning: ”if k balls among the
n first drawn are red, bet (on red) at the (n + 1)th

draw”.

One denotes kn = mink∈Kn
k.

The DM uses the Hurwicz criterion, is risk neutral
(u(x) = x) and is resolute; he chooses his betting
rule when learning the sample size n and before the
observations begin.

We are interested in the evolution of the optimal bet-
ting rule when n tends to infinity.

A betting behavior is a sequence (Kn)n∈N. Betting
behavior (Kn)n∈N weakly dominates betting behav-
ior (K ′

n)n∈N if for all n ∈ N, V (Kn) ≥ V (K ′
n) ; if,

moreover, V (Kn) > V (K ′
n) for some value of n ∈ N,

then (Kn)n∈N dominates (K ′
n)n∈N. A betting behav-

ior which is not dominated by any other is admissible.
A betting behavior which weakly dominates all the
others is optimal.

A betting behavior (Kn)n∈N will be called consis-
tent when its betting rules are all of the form Kn =
{kn, kn + 1, .., n} (i.e., betting if and only if at least



kn red balls have been drawn).

Lemma 1 For a fixed n, let betting rules Kn and K ′
n

only differ in the case where k red balls are drawn:
k ∈ Kn; K ′

n = Kn\{k}; then

V (Kn) > [=]V (K ′
n) ⇐⇒

k

n
> [=]L +

1

n
R

with L =

ln
1 − p−

1 − p+

ln
p+(1 − p−)

(1 − p+)p−

and

R =

ln

[

α

1 − α
×

m − p−M

p+M − m

]

ln
p+(1 − p−)

(1 − p+)p−

N.B. The proofs of Lemma 1 and of the other results
can be found in Jaffray, Jeleva (2007).

The following proposition is a direct application of
Lemma 1.

Proposition 1 Consider betting behavior (Kn)n∈N ,
and let kn = mink∈Kn

k .

A necessary condition for the admissibility of (Kn)n∈N

is that
kn

n
→n→∞ L

with L defined in lemma 1.

Proposition 2 The consistent betting behavior,
(K∗

n)n∈N where K∗
n = {k∗

n, k∗
n + 1, k∗

n + 2, ..., n}, and
for each n, k∗

n is the smallest integer such that

k∗
n

n
≥ L +

1

n
R with L and R defined in emma 1.

is an optimal betting behavior.

Note that expression

[

p+

1 − p+
×

1 − p−

p−

]k

×
[

1 − p+

1 − p−

]n

is a likelihood ratio; in fact the mono-

tonicity properties of the Hurwicz criterion make
likelihood ratio (possibly random) tests an admis-
sible family as in the standard statistical decision
theory (Neyman-Pearson lemma). For related results
concerning hypothesis testing with imprecise prob-
abilities on the parameter space, see Jaffray, Säıd
(1994).

Note also that expression R , defined in emma 1, has a
strong similarity with the term that would appear in

a Bayesian model, which is

ln

[

π

1 − π
×

m − p−M

p+M − m

]

ln
p+(1 − p−)

(1 − p+)p−

,

with π the prior probability of p− being the true pro-
portion of red balls.

Let us finally emphasize the fact that, although all
betting decisions are made only on the basis of a single
ex ante evaluation, data are taken into account in a
sensible way: for high values of n, the DM acts as if he
used relative frequencies as estimators of probabilities;
however, for smaller n, the degree of pessimism has
some influence on the bets through the term R.

4 An application of Resolute Choice

to Two-period Insurance Demand

In this section, we study a two-period insurance prob-
lem in which an individual has to choose his coverage
at period 2 after observing the period 1 outcome ([a]
loss [occurred] or no loss [occurred]).

An individual with initial wealth W faces a risk with
a unique amount of potential loss L < W. This situ-
ation can be represented by a random variable X : if
E is the event loss (occurs) and Ec the event no loss,
X(ω) = L for ω ∈ E and X(ω) = 0 for ω ∈ Ec. The
individual’s information and/or beliefs allow him to
assert that the probability of loss occurrence during
a year is between p− and p+. The set of probability
distributions which are consistent with the available
information is:

P =
{

P ∈ L : P (E) ∈
[

p−, p+
]}

(2)

where L denotes the set of all probability distributions
on the relevant support.

Two periods of time are considered: in the first pe-
riod, the individual has no insurance choice to make;
for instance, he rents a car, and an insurance coverage
with a deductible K ≤ L is automatically included in
the contract. In the second period however, the indi-
vidual has to decide if he will subscribe an insurance
contract or not, for instance he will buy a car and has
to decide whether or not he will take a theft insurance
(which is not mandatory). We assume that only one
insurance contract is available: it corresponds to full
coverage and the premium is Π < L.

We assume that the individual needs to decide im-
mediately, at the beginning of the first period, what
his insurance policy will be; the reason may be, for
instance, that he still has then other opportunities
beside renting-then-buying a car and that their com-
parisons require accurate evaluations, or that he has
to plan out his expenses in advance.

Individual preferences are represented by the Hurwicz
criterion: a decision δ : Ω → R is evaluated by func-
tional V of formula (1) where u is a strictly increasing
function.



In the simpler, one period situation, where there is
no previous experience of loss, the set of strategies
D contains only two elements, denoted: d, the indi-
vidual subscribes an insurance contract, and d̄, the
individual does not buy any insurance. According to
(1), these decisions have the following values:

V (d) = u (W − Π)
V

(

d̄
)

= (αp+ + (1 − α) p−)u (W − L)+
(1 − αp+ − (1 − α) p−)u(W )

and the decision to buy coverage depends on the
pessimism-optimism index α and on the information
precision in the following way:

V (d) ≥ V
(

d̄
)

⇔ α
(

p+ − p−
)

≥
u(W ) − u (W − Π)

u(W ) − u (W − L)
−p−.

Thus, a higher degree of pessimism and a greater im-
precision both act in favor of the decision to buy in-
surance coverage.

4.1 Decisions evaluation

We now turn to the evaluation of the decisions of
an individual who acquires additional information re-
lated to a period one potential loss. His decisions can
then be conditioned on the realization of the loss in
the first period. Our goal is to determine the influence
of the first period loss realization on the second period
decision as well as the impact of α on that decision.
We further assume probabilistic independence of the
successive events, i.e., that for any given probability
p ∈ [0, 1], with Ei denoting the event ”loss in period
i”, if P (E1) = p then P (E2/E1) = p as well, hence
P (E2) = p and P (E1 ∩ E2) = p2.

A strategy is now characterized by a pair of decisions:
the first one conditional on the realization of E1, and
the second one on the realization of Ec

1. The set of
possible strategies D consists then in four pairs of
decisions: D = {dd, dd̄, d̄d, d̄d̄}, where dd = {d if
E1, d if Ec

1}, dd̄ = {d if E1, d̄ if Ec
1}, ... The decision

tree corresponding to this problem is given in Fig.2.

The evaluations of the strategies at the beginning of
period one by the Hurwicz criterion are given in the
following proposition. This evaluation requires the
determination of the probabilities in [p−, p+] at which
the lowest and highest expected utility are achieved.
It turns out that these probabilities may well differ
from p+ and p− and depend on the strategy.

Proposition 3 If Π, K, L, p−, p+ are such that:

• u (W − L − K) ≤
1

2p−
[u(W − Π) + (2p− − 1)u(W − K)]

E1

Ec
1

Ec
2

Ec
2

Ec
2

Ec
2

d

d

d̄

d̄

W − K − Π

W − K − Π

W − K − L

W − K

W − Π

W − Π

W − L

W

−K
E2

E2

E2

E2

Figure 2: Insurance Demand Tree

• p∗ = 1
2 + u(W )−u(W−Π−K)

2[u(W )−u(W−L)]

verifies p∗ ∈ [p−, p+] and p∗ >
1

2
(p− + p+),

then the available decisions are evaluated as follows:

V (dd) = A(p+, p−)u (W − Π − K) +
(1 − A(p+, p−))u (W − Π) ;

V (dd̄) = A(p∗, p−)u (W − Π − K) +
B(p∗, p−)u (W − L) +C(1 − p∗, 1 − p−)u(W );

V (d̄d) = C(p+, p−)u (W − L − K)+B(p+, p−)u(W −
K)+ A(1 − p+, 1 − p−)u(W − Π)

V (d̄d̄) = C(p+, p−)u (W − L − K) + B(p+, p−)
× (u(W − K) + u(W − L)) + C(1 − p+, 1− p−)u(W )

where

A(p, q) = αp + (1 − α)q,
B(p, q) = αp(1 − p) + (1 − α)q(1 − q),
C(p, q) = αp2 + (1 − α)q2.

In very ambiguous situations, the requirements above
are not too restrictive; for instance, in the limiting
case of complete ignorance, that is, for [p−, p+] =
[0, 1], these conditions reduce to Π > K.

From now on, we assume that these conditions are
satisfied.

Note that the pessimistic evaluation of strategy dd̄
is not achieved at the upper probability bound p+:
with p∗ smaller than p+ but close to it, the advantage
of incurring period 1 loss K with the smaller proba-
bility p∗ is not compensated by the disadvantage of
incurring period 2 loss L with probability (1 − p∗)p∗

greather than (1 − p+)p+.

Let us now turn to a specific feature of the model: the
relevance of unrealized outcomes.

Consider strategies dd and dd̄. They differ by the



decision that follows the period 1 no loss event. The
utilities involved in the direct comparison of these con-
ditional decisions do not depend on K, and its value
would be irrelevant in a consequentialist approach.
However, with our criterion, V (dd) − V

(

dd̄
)

=
α (p+ − p∗)u (W − Π − K) +
(1 − αp+ − (1 − α)p−)u (W − Π)
− (αp∗(1 − p∗) + (1 − α)p−(1 − p−))u (W − L)−
(

α(1 − p∗)2 + (1 − α)(1 − p−)2
)

u(W )

The sign of the previous expression is indeterminate
and depends on the value of K, which influences
both the lowest utility u (W − Π − K) and p∗. More
precisely, the influence of K on the discrepancy be-
tween V (dd) and V

(

dd̄
)

increases with the pessimism-
optimism index α, since

d[V (dd)−V (dd̄)]
dK

=

α{− dp∗

dK
u (W − Π − K) − (p+ − p∗)u′ (W − Π − K)

+ (2p∗ − 1) dp∗

dK
u(W − L) + 2 (1 − p∗) dp∗

dK
u(W )}

The reason why the comparison of V (dd) and V
(

dd̄
)

depends on the irrelevant outcome K is that the Hur-
wicz criterion is a limiting form of a rank depen-
dent utility (RDU) criterion and that in RDU theory
(Quiggin 1982) the decision weight associated with a
consequence depends on the rank of this consequence
in the set of consequences of a given decision. Deci-
sions dd and dd̄ have W − Π − K as a common con-
sequence but while with dd, W − Π − K is the worst
consequence, this is no longer the case with dd̄ for
which it is W − L. Consequently, the decision weight
of u (W − Π − K) is not the same in the evaluation
of dd and dd̄, even if this consequence is obtained for
the same event (E1) with both decisions. Thus, the
second period preference between insurance or not in
the case where no loss occurred in the first period may
depend on the deductible level which the individual
would have paid had loss occurred.

4.2 A numerical example

The following example illustrates the impact of K on
the optimal strategy1.

We consider an individual with initial wealth W =
1 000 000 who faces the risk of a loss of amount L =
40 000. Loss probability at each period, p, belongs to
[0.01, 0.7] . The insurance premium for full coverage
is Π = 4 000. The utility function is assumed to be in
the CRRA class (with constant relative risk aversion)

that is u(x) =
x1−R

1 − R
; here, we take R = 2.

The sign of V (dd) − V
(

dd̄
)

depends on α and K as
follows:

1Numerical results are obtained with Mathematica 4.1.

• for α ∈ [0, 0.22[, V (dd) − V
(

dd̄
)

< 0 for any
K ∈ [0, 40 000] ;

• for α ∈ [0.22, 0.29[, there exist K∗ < 40 000
such that V (dd) − V

(

dd̄
)

≤ 0 for K ≤ K∗ and

V (dd) − V
(

dd̄
)

> 0 for K > K∗;

• for α ∈ [0.29, 0.33[, there exist K∗ and K∗∗ with
0 < K∗ < K∗∗ < 40 000 such that V (dd) −
V

(

dd̄
)

< 0 for K∗ < K < K∗∗ and V (dd) −

V
(

dd̄
)

≥ 0 for K ≤ K∗ and K ≥ K∗∗;

• for α ∈ [0.33, 1], V (dd)− V
(

dd̄
)

> 0 for any K ∈
[0, 40 000] .

5000 10000 15000 20000 K

[V (dd) − V (dd̄)] × 1010

1

2

3

0

Figure 3: Choice Dependence on K for α = 0.31

Let us now study the dependence of the optimal strat-
egy on K and α.

• We start by comparing dd̄ and d̄d: V
(

dd̄
)

−

V
(

d̄d
)

is a linear function of α; moreover,

for α = 0, as well as for α = 1, V
(

dd̄
)

−V
(

d̄d
)

>
0 for any K ∈ [0, 40000]; thus, for any α ∈ [0, 1],
dd̄ is preferred to d̄d.

• The same result is obtained for dd̄ when com-
pared with d̄d̄.

• The choice between dd and d̄d̄ depends on α in
the following way:

V (dd) − V (d̄d̄) < 0 for α ∈ [0, 0.003[;

V (dd) − V (d̄d̄) > 0 for α ∈ [0.003, 1].

Thus, for any K ∈ [0, 40000], strategies d̄d̄ and d̄d are
dominated so that, the best strategy is always either
dd or dd̄.

This dominance is due to the low insurance premium
Π that corresponds here to a probability estimation of
0.1. In consequence, individuals prefer either to fully



insure in any case (if they are pessimistic enough) and
thus benefit from the low premium, or to adapt their
decision to the observed loss. Fig.4 shows the optimal
strategy as a function of K and α. It appears that
the optimal decision results from a trade-off between
the attractivity of low price insurance and that of in-
formation depending decisions. For strong optimists,
the information effect dominates, whereas for strong
pessimists, the full coverage effect dominates. For in-
termediate values of α however, the deductible value
K may influence choice: a high value of K can even
influence all decisions by lowering the individual’s ex-
pected wealth perspectives and acting in favor of full
coverage.

K

α

dd̄

0.22 0.29

40000

0.33

dd dd

dd

dd̄ dddd̄

Figure 4: Choice Dependence on K and α

4.3 Optimal strategy for risk-neutral

individuals

To emphasize the impact of the pessimism index α
on the optimal insurance strategies, we now consider
the case when u(x) = x. This allows us to isolate the
influence of ambiguity attitude, characterized here by
α, from that of the risk attitude, characterized by u.

Proposition 4 Consider a two period insurance prob-
lem, where the individual’s imprecise information on
the loss probability is given by an interval [p−, p+]
with p− < 1

2 < p+ and the insurance premium Π
for full coverage is such that Π ∈ [p−L, p+L] . The
preferences of the individual are characterized by the
Hurwicz criterion with u(x) = x. Then, he orders the
different available strategies in the following way:

• dd̄ % d̄d for any α ∈ [0, 1] ;

• dd % d̄d̄ ⇔ α ≥ α∗ with α∗ = (Π−p−L)
(p+−p−)L where

α∗ < 1;

• if K = 0, dd % dd̄ ⇔ α ≥ α∗∗ with α∗∗ =
(1−p−)(Π−p−L)

(p∗−p−)(Π−p−L+L(1−p∗)) where α∗∗ < 1;

if K > 0, both dd % dd̄ and dd̄ % dd are possible
depending on the value of K.

• dd̄ % d̄d̄ ⇔ α ≥ α∗∗∗ with α∗∗∗ =
p−(Π−p−L)

(p+−p∗)(K+L)+(p∗−p−)[L(p∗+p−)−Π]

where α∗∗∗ < 1.

This proposition allows to determine, for K = 0
the impact of the pessimism index on the individ-
ual’s optimal strategy. More precisely, in this case,
α∗∗∗ < α∗ < α∗∗ and d̄d̄ is the optimal strategy
for α ∈ [0, α∗∗∗[ , dd̄ is the optimal strategy for
α ∈]α∗∗∗, α∗∗[ and dd is the optimal strategy for
α ∈]α∗∗, 1]. For α = α∗∗∗, the individual is indifferent
between d̄d̄ and dd̄, and for α = α∗∗, he is indifferent
between dd̄ and dd.

To sum up, in this model, neither a very optimistic
individual (α close to 0) nor a very pessimistic one
(α close to 1) takes advantage of the information: his
decisions do not depend on his period 1 observation.
The reason is that, strong pessimists are trying above
all to avoid the lowest possible consequences, which
are here W−L−K if E1 and W −L if Ec

1; choosing dd
is the strategy that makes it possible. The opposite is
true for strong optimists: they will prefer the decisions
that allow the higher possible consequences, which are
here W − K if E1 and W if Ec

1.

For moderate individuals, choice is less straightfor-
ward: for them, it is valuable both to avoid W−L−K
if E1 (which however means renouncing to get W−K)
and to preserve the possibility to obtain W if Ec

1

(which however means risking to get W − L); this
is only possible with dd̄, and trade-offs, which depend
on all the parameters (in particular on Π) may favor
this strategy.

5 Conclusion

The preceding results demonstrate the operational
tractability of the Resolute Choice dynamic adap-
tation of the Hurwicz criterion for decision making
under imprecise risk. This model is able to process
information correctly; in particular, for large sam-
ples, choices made show that the true probabilities
are learned correctly although implicitly.

Also, the puzzling influence of unrealized outcomes
appears as rather limited (only concerns individuals
whose pessimism index belongs to a small range) and
does not seem to lead to counter-intuitive decisions.
It is moreover interesting to note that sensitivity to
unrealized outcomes being excluded by Expected Util-
ity theory, the Resolute Choice model has a flexibility
that makes it attractive for descriptive purposes.
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