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Abstract


We consider the problem of quantifying our belief in
future values of a random variable X with unknown
distribution PX , based on the observation of a ran-
dom sample from the same distribution. The adopted
uncertainty representation framework is the Transfer-
able Belief Model, a subjectivist interpretation of be-
lief function theory. In a previous paper, the concept
of predictive belief function at a given confidence level
was introduced, and it was shown how to build such
a function when X is discrete. This work is extended
here to the case where X is a continuous random vari-
able, based on step or continuous confidence bands.


Keywords. Dempster-Shafer Theory, Evidence The-
ory, Transferable Belief Model, p-box, distribution
band.


1 Introduction


In the past few years, belief function theory has been
developed as a tool for data fusion, but also for the
management of uncertainty and various aspects of
data mining or decision making. Different interpre-
tations of this theory have been proposed [19]. In this
paper, we shall adopt the Transferable Belief Model
(TBM) interpretation [21], in which a belief function
is considered as representing weighted opinions of an
agent regarding some question of interest. This model
provides a flexible framework even when the available
information (data or expert knowledge) is poor. How-
ever, it is not always clear how to construct belief
functions for a given problem.


In this paper, we consider the special case where the
variable X of interest is defined from the result of
a random experiment. It is thus a random variable,
with unknown probability distribution PX . The avail-
able information is assumed to consist in past obser-
vations collected from n independent repetitions of
the same experiment, forming an independent ran-


dom sample from PX . Based on this information, we
would like to express our beliefs regarding future val-
ues to be generated from PX .


As the probability distribution of X is unknown, the
available information is incomplete and the precision
of the obtained belief function should depend on the
number of observations. In [5], a formalization of this
problem was suggested, using the concept of predic-
tive belief function (PBF). A PBF was defined as a be-
lief function less committed than PX with some user-
defined probability, and converging in probability to-
wards PX as the size of the sample tends to infinity.
Practical methods for building belief functions were
presented for the case where the domain X of X is
discrete, based on multinomial confidence regions.


In this article, the above approach is extended to the
case where X is a continuous random variable. The
extension is based on confidence bands, which play a
role similar to that of multinomial confidence regions
in the discrete case. When a confidence band is de-
fined by step upper and lower bounding functions, it
is known to be equivalent to a belief function on the
real line with a finite number of focal intervals. We
first show that this belief function is a predictive be-
lief function as defined in [5]. We then consider the
generalization to continuous confidence band. In that
case, the corresponding belief function is continuous,
and we derive the expression of its basic belief density.


The paper is organized as follows. In Section 2, the
reader is first reminded with the principles of belief
functions theory and of the definition of predictive
belief functions as introduced in [5]. The construc-
tion of a discrete predictive belief function from a step
confidence band is then exposed in Section 3, and the
construction of a continuous predictive belief function
with a basic belief density from a continous confidence
band is described in Section 4. Section 5 concludes the
paper.







2 Background on Belief Functions


This section provides a short introduction to the main
notions pertaining to the theory of belief functions
that will be used throughout the paper, and in par-
ticular, its TBM interpretation. We first consider the
case of belief functions defined on a finite domain [16],
and then address the case of a continuous domain [20].
The concept of predictive belief function as introduced
in [5] is then recalled.


2.1 Belief Functions on a Finite Frame


2.1.1 Definition of a Basic Belief Assignment


Let X = {ξ1, . . . , ξK} be a finite set, and let X be
a variable taking values in X . Given some eviden-
tial corpus, the knowledge held by a given agent at a
given time over the actual value of variable X can be
modeled by a so-called basic belief assignment (bba)
m defined as a mapping from 2X into [0, 1] such that:


∑


A⊆X


m(A) = 1. (1)


Each mass m(A) is interpreted as the part of the
agent’s belief allocated to the hypothesis that X takes
some value in A [16, 21]. The mass m(X ) is often re-
garded as representing a degree of ignorance.


2.1.2 Belief Updating


A fundamental mechanism for belief updating in the
TBM is the unnormalized Dempster’s rule of condi-
tioning, which is defined as follows [21]. Assume that
the agent’s beliefs about X are represented by a bba
m, and the agent learns that the true value of X lies in
B ⊆ X . Then, m is transformed into the conditional
bba m[B] defined as:


m[B](A) =
∑


C:C∩B=A


m(C). (2)


Upon learning that the truth lies in B, each mass of
belief given to C is thus transferred to C∩B, hence the
term “Transferable Belief Model”. Equivalent repre-
sentations of a bba m include the belief, plausibility
and commonality functions [16] defined as follows.


bel(A) =
∑


∅6=B⊆A


m(B), (3)


pl(A) =
∑


B∩A 6=∅


m(B), (4)


and


q(A) =
∑


B⊇A


m(B), (5)


for all A ⊆ X . In the TBM, bel(A) represents the
agent’s total degree of belief in A. The plausibility
pl(A) = bel[A](A) may be interpreted as the maximal
degree of belief that could be given to A after ac-
quiring new information. Similarly, we observe that
q(A) = m[A](A). The commonality of A is thus the
mass of belief that remains attached to A (i.e., the
degree of ignorance) after conditioning by A.


2.1.3 Decision Making


The TBM is a two-level model in which belief rep-
resentation and updating take place at a first level
termed credal level, whereas decision making takes
place at a second level called pignistic level [21]. To
make decisions, any bba m such that m(∅) < 1 is
mapped into a pignistic probability function Betp de-
fined by


Betp(x) =
∑


A⊆X ,A 6=∅


m(A)


1 − m(∅)


1A(x)


|A|
, ∀x ∈ X , (6)


where 1A denotes the indicator function of A. A de-
cision can then be made, based on Betp and on a
loss function, just as is done in Bayesian Probability
Theory.


2.2 Belief Functions on Real Numbers


Let us now assume that variable X takes values in
X = R. The above formalism can then be extended
in at least two different ways.


2.2.1 Discrete Bba on R


In the simplest approach, a bba is defined as above,
with the constraint that the set F(m) = {A1, . . . , An}
of focal elements is finite. This will be referred
to as a discrete bba. Typically, focal elements are
chosen among intervals or, more generally, Borel
sets [23, 6, 24, 13]. Denoting mi = m(Ai), with∑n


i=1 mi = 1, and assuming Ai 6= ∅ for all i, Equa-
tions (3)-(5) become:


bel(A) =
∑


Ai⊆A


mi, (7)


pl(A) =
∑


Ai∩A 6=∅


mi, (8)


and


q(A) =
∑


Ai⊇A


mi, (9)


for all A ∈ B(R), where B(R) denotes the Borel sigma-
algebra on R.







Equation (6) can be replaced by


Betp(x) =


n∑


i=1


mi


1Ai
(x)


|Ai|
, ∀x ∈ R, (10)


where |Ai| now denotes the Lebesgue measure of Ai


and we assume that 0 < |Ai| < ∞ for all i. Equation
(10) defines a probability density function [13]. In
particular, if the Ais are bounded intervals, Betp is a
finite mixture of continuous uniform distributions.


2.2.2 Basic Belief Density


A more complex generalization of the finite case is
obtained by replacing the concept of bba by that of
basic belief density (bbd) [4, 17, 20]. A normal bbd
m is a function taking values from the set of closed
real intervals into [0, +∞), such that


∫∫


x≤y


m([x, y]) dx dy = 1. (11)


The belief, plausibility and commonality can be de-
fined in the same way as in the finite case, replac-
ing finite sums by integrals. The following definitions
hold:


bel(A) =


∫∫


[x,y]⊆A


m([x, y]) dx dy, (12)


pl(A) =


∫∫


[x,y]∩A 6=∅


m([x, y]) dx dy, (13)


q(A) =


∫∫


[x,y]⊇A


m([x, y]) dx dy, (14)


for all A ∈ B(R). In particular, when A = [x, y],


bel([x, y]) =


∫ y


x


∫ y


u


m([u, v])dvdu, (15)


pl([x, y]) =


∫ y


−∞


∫ +∞


max(x,u)


m([u, v])dvdu, (16)


q([x, y]) =


∫ x


−∞


∫ +∞


y


m([u, v])dvdu, (17)


for all x ≤ y. The domains of these integrals may be
represented as in Figure 1, where each point in the
triangle corresponds to an interval with upper and
lower bounds indicated on the horizontal and vertical
axes, respectively.


Conversely, m may be recovered from bel or q as:


m([x, y]) = −
∂2bel([x, y])


∂x∂y
= −


∂2q([x, y])


∂x∂y
, (18)


provided these derivatives exist.


a b


a


b


from


to


x


y


a b


a


b


from


to


x


y


a b


a


b


from


to


x


y


(a) (b)


(c)


Figure 1: The belief, plausibility and commonality
functions are defined as integrals of the bbd with sup-
port [a, b] on the shaded area of triangles (a), (b) and
(c), respectively.


The pignistic probability density becomes [20]:


Betp(x) = lim
ǫ→0


∫ x


−∞


∫ +∞


x+ǫ


m([u, v])


v − u
dvdu. (19)


2.3 Predictive Belief Functions


In this section, we summarize the concept of pre-
dictive belief function introduced in [5]. Assume X
is a random variable with unknown probability dis-
tribution PX , and we have observed a realization
x = (x1, . . . , xn) of an independent and identically
distributed (iid) random sample X = (X1, . . . , Xn)
with parent distribution PX . Based on this informa-
tion, we would like to quantify our beliefs about the
next value of X . As a toy example, consider the case
where X denotes the color of a ball taken from an
urn containing balls of different colors. Having ob-
served the colors of n balls randomly taken from the
urn with replacement, we would like to quantify our
belief regarding the color of the next ball.


Let bel(·;X) denote a belief function on X constructed
using X. This is a function taking values from a sigma
algebra A into [0, 1]. Typically, A = 2X if X is finite,
and A = B(R) if X = R (only these two cases will be
considered in this paper). In [5], we postulated that
such a belief function should satisfy the following two
requirements:


∀A ∈ A, bel(A;X)
P


−→ PX(A), as n → ∞, (20)


where
P
−→ denotes convergence in probability, and


P {bel(A;X) ≤ PX(A), ∀A ∈ A} ≥ 1 − α, (21)







where α ∈ (0, 1).


Requirement (20) means that bel(·;X) should become
closer to PX as the sample size tends to infinity.


For finite n, bel(·;X) should be less informative than
PX , hence the condition bel(·;X) ≤ PX . However,
this condition cannot be satisfied for all realizations
of the random sample1, hence requirement (21), which
states that it should be satisfied asymptotically for at
least a fraction 1 − α of the samples.


A belief function bel(·;X) satisfying requirements (20)
and (21) is called a predictive belief function at con-
fidence level 1 − α. Methods for constructing such
belief functions in the case where random variable X
is discrete were described in [5], based on multinomial
confidence regions.


The construction of predictive belief functions in the
continuous case (X = R) is the main topic of this pa-
per. It will be addressed in the following two sections.


3 Discrete Predictive Belief


Functions on R


In this section, the construction of a discrete predic-
tive belief function on R from a step confidence band
is addressed. Basic definitions related to confidence
bands are first recalled in Section 3.1, and the con-
struction of Kolmogorov confidence bands is exposed
in Section 3.2. In Section 3.3, we show that the dis-
crete belief function with interval focal sets equivalent
to a Kolmogorov confidence band is a predictive belief
function. The random set interpretation of a p-box is
finally recalled in Section 3.4, as a way to introduce
the continuous generalization presented in the next
section.


3.1 Confidence Bands: Definitions


Let us assume that we have a random variable X with
cumulative distribution function (cdf) FX . In some
cases, FX is not precisely known, but we can spec-
ify a lower bounding function F : R → [0, 1] and an
upper bounding function F : R → [0, 1] such that
F (x) ≤ FX(x) ≤ F (x) for all x ∈ R. The convex set
of probabilities compatible with these constraints


ΓX(F , F ) = {P |∀x ∈ R, F (x) ≤ P ((−∞, x]) ≤ F (x)}


is called a distribution band [11].


In the special case where F and F are step functions,
then ΓX(F , F ) is called a probability box2, or p-box


1Indeed, such a requirement would lead to the vacuous belief
function.


2Ferson et al. [6] actually used the term “p-box” as a syn-


for short [6]. A continuous distribution bound can al-
ways be enclosed in a p-box. The smallest discrete ap-
proximation is always obtained by choosing the lower
and upper bounding step functions to be right and
left-continous, respectively [6]. From now on, only
p-boxes possessing this property will be considered.


Suppose now that the available information about
FX takes the form of an iid random sample X =
(X1, . . . , Xn) with parent distribution FX . Let
F (·;X) and F (·;X) be two functions computed from
X and such that F (·;X) ≤ F (·;X). The distribution
band ΓX(F (·;X), F (·;X)) is called a confidence band
at level α ∈ (0, 1) [12, page 334] iff


P
{
F (x;X) ≤ FX(x) ≤ F (x;X), ∀x ∈ R


}
= 1 − α,


or, equivalently:


P
{
PX ∈ ΓX


(
F (·;X), F (·;X)


)}
= 1 − α.


Note that, in the above equalities, FX and PX are
fixed unknown functions, whereas F (·;X) and F (·;X)
depend on random sample X.


3.2 Kolmogorov Confidence Bands


Let us assume that X is a continuous random variable.
The simplest way to obtain a confidence band for FX


is to use Kolmogorov’s statistic


Dn = sup
x


|Sn(x;X) − FX(x)|,


where Sn(·;X) is the sample distribution function de-
fined by


Sn(x;X) =


{
0, x < X(1)


k/n, X(k) ≤ x < X(k+1)
1, X(n) ≤ x,


(22)


for all x ∈ R, where X(1) ≤ X(2) ≤ . . . ≤ X(n) denote
the observations sorted in increasing order.


The distribution of Dn does not depend on FX . It
was computed for fixed n by Kolmogorov [10], who
also computed the asymptotic distribution of Dn. Let
dn,α denote the critical value of Dn defined as P (Dn >
dn,α) = α. Thus,


P { Sn(x;X) − dn,α ≤ FX(x)


≤ Sn(x;X) + dn,α, ∀x ∈ R } = 1 − α, (23)


which implies that Sn ± dn,α defines a confidence
bound at level 1 − α [9, page 481]. This band may


onym to “distribution band”. However, following Kriegler and
Held [11], we prefer to reserve the term “p-box” for the impor-
tant case where the bounding functions are step functions.







be narrowed by using the inequalities 0 ≤ FX(x) ≤ 1
for all x. Hence, we have:


F (x;X) = max(0, Sn(x;X) − dn,α), (24)


F (x;X) = min(1, Sn(x;X) + dn,α). (25)


If the support of X is bounded and known to be in-
cluded in [b, B], then the above bounds can be further
narrowed.


Note that Sn(·|X) as defined by (22) and, conse-
quently, both F (·;X) and F (·;X) are right-continuous
step functions. However, F (·;X) can be replaced by


the left-continuous function F
′
(·;X) taking the same


values everywhere except at sample points, defined as


F
′
(x;X) = limh→x− F (h;X). The pair (F , F


′
) still


defines a confidence band at level 1 − α, i.e.,


P
{
PX ∈ ΓX(F , F


′
)
}


= 1 − α. (26)


Example 1. The data reported in [14] consists in
the operational lives (in hours) of 20 bearings. These
are 2398, 2812, 3113, 3212, 3523, 5236, 6215, 6278,
7725, 8604, 9003, 9350, 9460, 11584, 11825, 12628,
12888, 13431, 14266, 17809. Here, the variable of
interest, denoted X (the lifetime of a bearing), has a
lower bound b = 0 and no upper bound (B = ∞).
Figure 2 shows the sample cdf of this data, together
with the lower and upper bounding functions defining
the Kolmogorov confidence band at level 1−α = 0.95.
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Figure 2: Sample cdf Sn and Kolmogorov confidence
band at level 1 − α = 0.95 for the bearings data.


3.3 Predictive Belief Function Induced by a


Kolmogorov Confidence Band


The above method for constructing a confidence band
yields a pair of lower and upper step functions, i.e.,
a p-box. The relationship between p-boxes and be-
lief functions has been studied by several authors


[23, 6, 22]. Recently, the exact correspondance be-
tween p-boxes with bounded support and discrete be-
lief functions was proved by Kriegler and Held [11],
who also proposed an algorithm for the rigorous con-
struction of a discrete mass function m on R equiva-
lent to a p-box.


The principle of this construction is illustrated in Fig-
ure 3. The lower and upper bounding functions are
assumed to be right and left continuous, respectively.
Each rectangle Ai in this figure corresponds to a focal
interval [ai, bi), with mass m([ai, bi)) = di − ci.
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Figure 3: Principle of the construction of a basic be-
lief assignment m from a p-box (F , F ). Each rectangle
Ai in the area between the lower and upper bound-
ing functions corresponds a focal interval [ai, bi) of m,
with mass di − ci.


Let ΓX(bel) denote the set of probability measures
compatible with bel, the belief function induced by
m, i.e.,


ΓX(bel) = {P |bel(A) ≤ P (A), ∀A ∈ B(R)}.


Kriegler and Held [11] proved that (F , F ) and bel are
two equivalent representations of a unique family of
probabilities, i.e.,


ΓX(bel) = ΓX(F , F ). (27)


If bel and pl denote the corresponding belief and plau-
sibility functions, and if P and P denote the lower
and upper envelopes of ΓX(F , F ), we have bel = P
and pl = P . In particular, bel((−∞, x]) = F (x) and
pl((−∞, x]) = F (x) for all x ∈ R.


Note that, although Kriegler and Held only consid-
ered the case of p-boxes with bounded support, their
algorithm and result may be applied directly to the
case of p-boxes with unbounded support.


Let us now consider the case where F and F are the
lower and upper bounding functions of Kolmogorov
confidence band at level 1 − α, as defined by (24)-
(25). Let bel(·;X) denote the belief function on R con-







structed from p-box (F , F
′
) using Kriegler and Held’s


algorithm. The following proposition holds.


Proposition 1. bel(·;X) is a predictive belief func-
tion at level 1 − α.


Sketch of proof. First, requirement (21) is obviously
satisfied as a direct consequence of (26) and (27):


since ΓX(bel(·;X)) = ΓX(F , F
′
), we have


P {bel(A;X) ≤ PX(A), ∀A ∈ A} =


P {PX ∈ ΓX(bel(·;X))} = 1 − α.


Moreover, given that F (x)
P
−→ FX(x) and F


′
(x)


P
−→


FX(x) for all x ∈ R, it can easily be shown that


bel(A;X)
P
−→ PX(A) for all interval A. Lastly, for any


B =
⋃


i∈I Ai where (Ai)i∈I with I ∈ N is a countable
family of intervals, we have


bel(B;X) =
∑


i∈I


bel(Ai;X)
P
−→


∑


i∈I


PX(Ai) = PX(B),


which proves that requirement (20) is satisfied, and
completes the proof. �


Example 2. To illustrate the construction of a pre-
dictive belief function from a Kolmogorov confidence
band, let us consider again the data of Example 1.
Based on this data, we would like to express our be-
liefs regarding the lifetime X of a new bearing taken
randomly from the same population. For commodity
of representation, let us adopt the reasonable assump-
tion that X has an upper bound, which will arbitrarily
be set to 30000, so that the support of X is assumed
to be [0, 30000].
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Figure 4: Focals intervals of the PBF constructed
from the Kolmogorov confidence band at level 1−α =
0.95 (bearings data). The height of each segment rep-
resenting a focal interval is equal to the cumulated
mass.


The focal intervals of the corresponding PBF bel(·;X)
are displayed in Figure 4. Figures 5 and 6 are exam-
ples of graphical displays that reveal different aspects


of the information contained in the belief function
bel(·;X). Figure 5 shows the plausibility profile func-
tion x → pl({x};X) and the pignistic probability den-
sity function Betp computed from (6), which are two
left-continuous real-valued step functions with simple
interpretation. Figure 6 shows grey level representa-
tions of bel([x, y];X), pl([x, y];X) and q([x, y];X) as
two-dimensional functions of (x, y).
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Figure 5: Plausibility profile function (up) and pig-
nistic probability density function (down) of the dis-
crete PBF constructed from the Kolmogorov confi-
dence band (Bearings data).


3.4 Random Set Interpretation


The bba m associated to a p-box (F , F ) may also
be shown to correspond formally to a random set [1].


Let F−1 and F
−1


be the pseudo-inverses of F and F ,
defined, respectively, as:


F−1(α) = inf{x ∈ R, F (x) ≥ α},


F
−1


(α) = inf{x ∈ R, F (x) ≥ α},


for all α ∈ [0, 1]. Let us consider the mapping
ρ from [0, 1] to the set of real intervals, such that


ρ(α) = (F−1(α), F
−1


(α)], and let us consider the uni-
form probability distribution PU on [0, 1]. Then ρ is
a random set, and it is formally equivalent to m. Let


F = {(F−1(α), F
−1


(α)], α ∈ [0, 1]}. For all A ∈ F ,
we have


m(A) = PU (ρ−1(A)).
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Figure 6: Contour plots of functions bel[X]([x, y]),
pl[X]([x, y]) and q[X]([x, y]) constructed from Kolo-
mogorov’s confidence band (Bearings data).


Note that the uniform probability distribution on
[0, 1] and the mapping ρ are only considered here as
mathematical constructs. In the TBM, only belief
functions have an interpretation, and an underlying
multi-valued mapping is not assumed. However, the
random set point of view will guide us in the follow-
ing section to propose a generalization of the above
results in the case of continuous distribution bands.


4 Continuous Predictive Belief


Functions on R


Kolmogorov’s confidence bands have the advantage of
being exact and non parametric. However, they have
a constant vertical width, which makes them unnec-
essarily broad in the tails. As a result, the equivalent
belief functions may be excessively imprecise. Nar-
rower confidence bands can be computed using para-
metric methods, but they are defined by continuous
bounding functions. The usual approach to continu-
ous distribution bands is to approximate them using a
p-box [6]. Here, we show that this approximation can
be avoided, and a continuous predictive belief func-
tion on R can be constructed from a continuous confi-
dence band, thus providing an extension to the results
presented in the previous section. Parametric confi-
dence bands are first briefly reviewed in the following
section.


4.1 Parametric Confidence Bands


Methods for the construction of continuous confidence
bands as described above were proposed by several
authors, including Kanofsky and Srinivasan [8] and
Cheng and Iles [3]. In the sequel, Cheng and Iles’


method, which will be used later to demonstrate the
main findings of this paper, will briefly be recalled.


Let us assume that X is a continuous random vari-
able with cdf FX(x, θ), where θ is vector of r unknown
parameters. Cheng and Iles’ approach consists in de-
termining lower and upper bounds of the cdf when θ
varies in a confidence region R. This confidence region
is built from the statistics


Q(θ) = (θ̂ − θ)T I(θ)(θ̂ − θ),


where θ̂ is the maximum likelihood estimate of θ, and
I(θ) is the Fisher information matrix. It is known that
Q(θ) is asymptotically a chi-squared variable with r
degrees of freedom. In [3], Cheng and Iles apply their
method in the case of a general location-scale para-
metric model of the form:


FX(x) = G


(
x − µ


σ


)
,


where G is a fixed distribution function, and µ and
σ are the unknown location and scale parameters. In
that case the Fisher information matrix is of the form


I(µ, σ) =
n


σ2


(
k0 −k1
−k1 k2


)
,


where k0, k1 and k2 are constants independent of µ
and σ. The bounds of the confidance band then have
the following expressions:


F (x) = G(ξ + h), (28)


F (x) = G(ξ − h), (29)


where ξ = (x− µ̂)/σ̂, µ̂ and σ̂ are the maximum like-
lihood estimates of µ and σ, and


h =


√
γ


n k0


(
1 +


(k0ξ + k1)2


k0k2 − k2
1


)
. (30)


Coefficient γ is the value for which P (Q(µ, σ) ≤
γ) = 1 − α. It can be approximated by the chi-
squared quantile χ2


2(α). Cheng and Iles [3] demon-
strate the application of these formula for the cases
of the normal, lognormal, extreme-value (log-Weibull)
and Weibull distributions. In the case of the normal
distribution, k0 = 1, k1 = 0, and k2 = 2.


4.2 PBF Induced by a Continuous


Confidence Band


Let (F , F ) be a continuous distribution band for some
continuous random variable X , and assume that the
lower and upper bounding functions F and F are
strictly increasing. Consider the mapping ρ from
[0, 1] to the set of real intervals, such that ρ(α) =







[F−1(α), F
−1


(α)], where F−1 and F
−1


are the in-
verses of F and F , respectively. If the [0, 1] interval is
endowed with a uniform probability distribution, then
mapping ρ defines a random set, which corresponds
to a continuous belief function bel on R as described
in Section 2.2.2.


This belief function is such that bel([x, y]) = P ([x, y])
for all x ≤ y, P being the lower envelope of the distri-
bution band. In particular, we have bel((−∞, x]) =
F (x) and pl((−∞, x]) = F (x), for all x ∈ R. As we
are working within the TBM, this random set is for
us a purely mathematical construct, and we would
like to express bel directly through its bbd m([x, y]),
x ≤ y. This can be achieved using (18). The following
proposition holds.


Proposition 2. The bbd associated to a continuous
distribution band (F , F ) is defined by


m([x, y]) = −
∂2bel([x, y])


∂x∂y
,


with:


∂2bel([x, y])


∂x∂y
= −f(x)f (y)δ(F (y) − F (x)),(31)


= −f(x)δ(y − F−1 ◦ F (x)), (32)


= −f(y)δ(x − F
−1


◦ F (y)), (33)


where f and f are the first derivatives of F and F ,
respectively, and δ is the Dirac delta function.


Proof. We have


bel([x, y]) = P ([x, y]) (34)


= max(0, F (y) − F (x)) (35)


= (F (y) − F (x))H(F (y) − F (x)),(36)


where H is the Heaviside function. By differentiating
with respect to x and y, we get:


∂2bel([x, y])


∂x∂y
= −f(x)


(
δ(F (y) − F (x))f (y)


+ f(y)δ(F (y) − F (x))


+(F (y) − F (x))δ′(F (y) − F (x))f (y)
)
. (37)


Now, from the property of the delta function:
xδ′(x) = −δ(x), we have:


(F (y) − F (x))δ′(F (y) − F (x)) = −δ(F (y) − F (x)).


Hence, (37) is equivalent to (31).


In order to prove that (32) and (33) can be deduced
from (31), the following property of the delta function
can be used. For all function g,


δ (g(x)) =
∑


i


δ(x − xi)


|g′(xi)|
,


where the xi are the roots of g. For fixed x, F (y) −
F (x) is a function of y with a unique root F−1 ◦F (x).
Hence,


f(x)f (y)δ(F (y) − F (x)) =


f(x)f (y)
δ(y − F−1 ◦ F (x))


f(F−1 ◦ F (x))
(38)


The left-hand side of (38) is equal to 0 if y 6= F−1 ◦
F (x), and f(x)δ(y − F−1 ◦ F (x)) otherwise. Conse-
quently,


f(x)f(y)δ(F (y) − F (x)) = f(x)δ(y − F−1 ◦ F (x)).


Equation (33) can be deduced from (31) in a similar
way, by fixing y and treating F (y)−F (x) as a function
of x. �


It can be checked that (35) may be recovered from
m([x, y]) using (15). Similarly, the expressions of
pl([x, y]) and q([x, y]) can be obtained from m([x, y])
using (16) and (17). The following proposition holds.


Proposition 3. Let m be the bbd associated to a con-
tinuous distribution band (F , F ). The plausibility and
the commonality of any real interval [x, y] are given
by:


pl([x, y]) = F (y) − F (x), (39)


q([x, y]) = max(0, F (x) − F (y)). (40)


Proof. Let us prove (40). We have


q([x, y]) =


∫ x


−∞


∫ +∞


y


m([u, v])dvdu


=


∫ x


−∞


f(u)I(u)du,


with


I(u) =


∫ +∞


y


δ
(
v − F−1 ◦ F (u)


)
dv.


Now, I(u) = 1 if F−1 ◦ F (u) ≥ y, i.e., if u ≥ F
−1


◦


F (y), and 0 otherwise. Hence q([x, y]) = 0 if F
−1


◦
F (y) ≥ x, i.e., if F (y) ≥ F (x); otherwise,


q([x, y]) =


∫ x


F
−1


◦F (y)


f(u)du = F (x) − F (y).


The proof of (39) is similar. �


Finally, the expression of the pignistic probability
density associated to bbd m is given by the follow-
ing proposition.


Proposition 4. Let m be the bbd associated to a con-
tinuous distribution band (F , F ). The associated pig-
nistic probability density Betp is given by


Betp(x) =


∫ x


F
−1


◦F (x)


f(u)


F−1 ◦ F (u) − u
du.







Proof. From (19), we get


Betp(x) = lim
ǫ→0


∫ x


−∞


J(u)du,


with


J(u) = f(u)


∫ +∞


x+ǫ


δ
(
v − F−1 ◦ F (u)


)


v − u
dv


=


{
f(u)


F−1◦F (u)−u
if F−1 ◦ F (u) ≥ x + ǫ


0 otherwise.


The condition F−1 ◦ F (u) ≥ x + ǫ can be expressed


as u ≥ F
−1


◦ F (x + ǫ), hence


Betp(x) = lim
ǫ→0


∫ x


F
−1


◦F (x+ǫ)


f(u)


F−1 ◦ F (u) − u
du


=


∫ x


F
−1


◦F (x)


f(u)


F−1 ◦ F (u) − u
du.


�


The above results are valid for any continuous dis-
tribution band (F , F ). When (F , F ) is a confidence
band at level 1 − α, then it is easy to see, using the
same line of reasoning as in Section 3.3, that the cor-
responing belief function is a predictive belief function
at level 1 − α.


Example 3. This method for computing a continu-
ous predictive belief function was applied to the bear-
ings data of examples 1 and 2 As in [3], we assumed
these data have a lognormal distribution. Figure 7
shows the 95 % confidence band and the estimated
cdf. The plausibility profile function x → pl({x};X) is
shown in Figure 8, and contour plots of bel([x, y];X),
pl([x, y];X) and q([x, y];X) are shown in Figure 9.
These figures should be compared to Figures 2, 5 and
6, respectively.
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Figure 7: Continuous confidence band and cumulative
density function estimated through Cheng and Iles’
algorithm.
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Figure 8: Plausibility profile function obtained from
the continuous confidence band of Figure 7.
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Figure 9: Contour plots of functions bel([x, y];X),
pl([x, y];X) and q([x, y];X) constructed from Cheng
and Iles’ confidence band.


5 Conclusion


We have addressed the problem of constructing pre-
dictive belief functions as defined in [5], in the case
where the random variable X is continuous. We have
shown that such belief functions can be constructed
from confidence bands, which play the same role as
multinomial intervals in [5]. The methods yields a
discrete BF with a finite number of interval focal sets
when applied to a Kolomogov confidence band, and a
basic belief density as studied in [20] when applied to
a continuous parametric confidence band. These be-
lief functions are interpreted as quantifying our belief
in a future realization of X , based on a realization of
a random sample from the same distribution.


An application of these results to novelty detection is
described in [2]. Assume that we have defined a nov-
elty measure T using, e.g., one-class support vector
machines [15] or kernel principal component analysis
[7]. Based on observations T1, . . . , Tn of T for data
recorded while the system under study was in the







normal state ω0, we may compute a predictive belief
function on T , given that the system is in the normal
state. Using the General Bayesian Theorem [18] with
some assumptions, it is then possible to build a belief
function on Ω = {ω0, ω0} (where ω0 denotes the hy-
pothesis that the system is not in the normal state),
given T . This belief function may be combined with
other information or used for decision making.
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