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Abstract

We consider the task of proving Walley’s (joint or
strong) coherence of a number of probabilistic assess-
ments, when these assessments are represented as a
collection of conditional lower previsions. In order to
maintain generality in the analysis, we assume to be
given nearly no information about the numbers that
make up the lower previsions in the collection. Un-
der this condition, we investigate the extent to which
the above global task can be decomposed into simpler
and more local ones. This is done by introducing a
graphical representation of the conditional lower pre-
visions, that we call the coherence graph: we show
that the coherence graph allows one to isolate some
subsets of the collection whose coherence is sufficient
for the coherence of all the assessments. The situa-
tion is shown to be completely analogous in the case
of Walley’s notion of weak coherence, for which we
prove in addition that the subsets found are optimal,
in the sense that they embody the maximal degree
to which the task of checking weak coherence can be
decomposed. In doing all of this, we obtain a number
of related results: we give a new characterisation of
weak coherence; we characterise, by means of a spe-
cial kind of coherence graph, when the local notion of
separate coherence is sufficient for coherence; and we
provide an envelope theorem for collections of lower
previsions whose graph is of the latter type.

Keywords. Walley’s strong and weak coherence, co-
herent lower previsions, graphical models, coherence
graph.

1 Introduction

Suppose we plan to carry out a statistical analysis
about a certain domain modelled by the following

lower previsions :

P 1(X1), P 2(X2|X1), P 3(X3|X2), P 4(X4|X3),

P 5(X5, X6|X1), P 6(X2|X3), P 7(X7|X4), P 8(X8|X5),

P 9(X8|X6), P 10(X9, X10|X6, X7), P 11(X11|X9, X10).

Each of them represents a real functional interpreted
as a subject’s lower prevision (i.e., lower expectation)
for every bounded real-valued function of the random
variables on the l.h.s. of the bar, conditional on given
values of the variables on the r.h.s. of the bar.

In order to carry out the analysis, we should first ver-
ify that the assessments represented by the lower pre-
visions are self-consistent, or coherent. Indeed coher-
ence is a (minimal) requirement of rationality, and it
is the key that enables one to use a number of power-
ful theoretical tools to do statistical inference.

Yet, checking coherence can be particularly difficult
even in the simple setting illustrated above. In fact,
this is a common problem. The power of coherence
comes with a price: the technical complications that
arise when dealing explicitly with it.

This is the case of the coherence notion that is the fo-
cus of this paper, i.e., Walley’s definition of coherence
[4, Section 7.1.4(b)], which we also call joint or strong
coherence, so as to distinguish it from a weaker notion,
also developed by Walley, and called weak coherence.
Weak and strong coherence are reviewed in Section 2
of this paper, along with other introductory material
about Walley’s theory of coherent lower previsions.

We argue that the mentioned difficulty is strictly re-
lated to the fact that coherence, by its very nature, is
a global notion: as such, it seems to resist being repre-
sented and verified in a local fashion. This is enforced
by our initial results in Section 3: we show that a
number of (conditional) lower previsions, such as P 1,
. . . , P 11 in the above example, are weakly coherent if
and only if there is an extension, i.e., a lower previ-
sion P (X1, . . . , X11) in the example, that is pairwise
coherent with each of them; and they are strongly co-



herent if and only if they are globally coherent with
such an extension. In other words, strong coherence
seems to be much less amenable to local considera-
tions than other, weaker notions of coherence.

Still, locality is an important property: it is the ba-
sis for having compact and efficient models of uncer-
tainty, as well as models that are easier to understand,
as it is widely acknowledged after the lesson given
by graphical models in statistics and artificial intelli-
gence.

The question, at this point, is the following: can we
preserve both locality and (strong) coherence?

We regard the present paper as a first positive answer
to this question; such an answer is made possible by
a new graphical model that we propose in Section 5,
and that we call coherence graph. Coherence graphs
are graphical representations of the structural con-
nections of the lower previsions in a given collection.
For example, the coherence graph for the lower previ-
sions P 1, . . . , P 11 is shown in Figure 1. Its semantics
should be obvious once we identify the lower previ-
sions with the black solid circles in the graph.
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Figure 1: The coherence graph for P 1, . . . , P 11.

We talk of structural connections, or of collection tem-
plate, as defined in Section 4, because we do not focus
on the numbers that make up the lower previsions; by
coherence graphs we rather aim at revealing the struc-
ture behind the notion of coherence. This structure
tells us to what extent the task of checking coherence
can be made local. For instance, from the graph in
Figure 1 we shall deduce that P 1, . . . , P 11 are coher-
ent if so are the lower previsions

P 1(X1), P 2(X2|X1), P 3(X3|X2), P 5(X5, X6|X1),

P 6(X2|X3), P 8(X8|X5), P 9(X8|X6).

More generally speaking, our main result, stated in
Section 6, is that coherence graphs allow us to graph-
ically find out a so-called minimal partition of the
collection of lower previsions, such that the coherence

of the lower previsions in each set of the partition is
sufficient for the coherence of the overall collection.

We show that the situation is completely analogous if
we focus on weak coherence: proving weak coherence
within each set of the minimal partition is sufficient
for the weak coherence of the overall collection. In
addition, in the case of weak coherence we can show
that the partition found using the coherence graph is
indeed minimal, in the sense that it is not possible
to use non-coarser1 alternative partitions to the same
extent.

We should mention that these results are fully gen-
eral with respect to the kind of admissible possibility
spaces: they hold irrespective of the fact that we are
dealing with finite, countable, or continuous spaces,
possibly at the same time. Hence, our results can be
used in fields as diverse as expert systems and statis-
tics, just to name a few. Moreover, they are also valid
for collections of linear previsions, i.e., they do not
depend on the precise or imprecise character of the
assessments.

We see two major consequences of our results. The
first is directly related to proving coherence. We be-
lieve that coherence graphs, by making the structure
behind coherence explicit, have the potential to give a
boost to the theoretical advances in probability, and
especially in imprecise probability. Similarly, there
seems to be substantial hope for coherence graphs to
enhance also the state-of-the-art algorithms for prov-
ing coherence. In the case of finite spaces of possi-
bilities, this task is typically addressed by linear pro-
gramming problems [1, 2, 5] that tend to grow very
large as a consequence of the underlying NP-hardness
of the task itself. But, by exploiting the structure
of coherence graphs, it will often be possible to de-
compose the overall linear programming problem in a
number of smaller ones, thus speeding up computa-
tion.

The second consequence is more of a principled kind,
and is related to a subset of coherence graphs, called
of type A1, that leads to partitions entirely made up
of singletons. This implies that the related collections
are immediately known to be coherent, irrespective of
their numerical values, provided each of their elements
satisfies a local property, called separate coherence.
We should like to give a special perspective on these
collections, by making an analogy with propositional
logic. In propositional logic, the formulas that hold
irrespective of the values their Boolean variables take,
are called tautologies, and are regarded as the rules of

1Proving weak coherence within the sets of a coarser parti-
tion would immediately imply weak coherence within the sets
of the minimal partition.



logic. We think that collections of lower previsions
that have an A1-representation have a special role,
and may embody a kind of ‘compositional’ rules that
deliver jointly coherent collections by local considera-
tions alone.

2 Coherent lower previsions

Let us give a short introduction to the concepts and
results from the behavioural theory of imprecise prob-
abilities that we shall use in the rest of the paper. We
refer to [4] for an in-depth study of these and other
properties.

Given a possibility space Ω, a gamble is a bounded
real-valued function on Ω. This function represents a
random reward f(ω), which depends on the a priori
unknown value ω of Ω. We shall denote by L(Ω) the
set of all gambles on Ω. A lower prevision P is a real
functional defined on some set of gambles K ⊆ L(Ω).
It is used to represent a subject’s supremum accept-
able buying prices for these gambles, in the sense that
for any ǫ > 0 and any f in K the subject is disposed
to accept the uncertain reward f − P (f) + ǫ.

We can also consider the supremum buying prices for
a gamble, conditional on a subset of Ω. Given such a
set B and a gamble f on Ω, the lower prevision P (f |B)
represents the subject’s supremum acceptable buying
price for the gamble f , updated after coming to know
that the unknown value ω belongs to B, and nothing
else. If we consider a partition B of Ω (for instance a
set of categories), then we shall represent by P (f |B)
the gamble on Ω that takes the value P (f |B) if and
only if ω ∈ B. The functional P (·|B) that maps any
gamble f on its domain into the gamble P (f |B) is
called a conditional lower prevision.

Let us now re-formulate the above concepts in terms
of random variables, which are the focus of our
attention in this paper. Consider random vari-
ables X1, . . . , Xn, taking values in respective sets
X1, . . . ,Xn. For any subset J ⊆ {1, . . . , n} we shall
denote by XJ the (new) random variable

XJ := (Xj)j∈J ,

which takes values in the product space

XJ := ×j∈JXj .

We shall also use the notation Xn := X{1,...,n}. This
will be our possibility space in the rest of the paper.

Definition 1. Let J be a subset of {1, . . . , n}, and let
πJ : Xn → XJ be the so-called projection operator,
i.e., the operator that drops the elements of a vector
in Xn that do not correspond to indexes in J . A
gamble f on Xn is called XJ -measurable when for any
x, y ∈ Xn, πJ(x) = πJ (y) implies that f(x) = f(y).

There exists a one-to-one correspondence between
the gambles on Xn that are XJ -measurable and the
gambles on XJ : given an XJ -measurable gamble f

on Xn, we can define f ′ on XJ by f ′(x) := f(x′),
where x′ is any element in π−1

J (x); conversely, given
a gamble g on XJ , the gamble g′ on Xn given by
g′(x) := g(πJ (x)) is XJ -measurable.

Consider two disjoint subsets O, I of {1, . . . , n}.
Then, P (XO|XI) represents a subject’s behavioural
dispositions about the gambles that depend on the
outcome of the variables {Xk, k ∈ O}, after coming
to know the outcome of the variables {Xk, k ∈ I}.
As such, it is defined on the set of gambles that de-
pend on the values of the variables in O ∪ I only, i.e.,
in the set KO∪I of the XO∪I -measurable gambles on
Xn. Given such a gamble f and x ∈ XI , P (f |XI = x)
represents his supremum acceptable buying price for
the gamble f , if he came to know that the variable XI

took the value x (and nothing else). Under the nota-
tion we gave above for lower previsions conditional on
events and partitions, this would be P (f |B), where
B := π−1

I (x). When there is no possible confusion
about the variables involved in the lower prevision, we
shall use the notation P (f |x) for P (f |XI = x). The
sets {π−1

I (x) : x ∈ XI} form a partition of Ω. Hence,
we can define the gamble P (f |XI), which takes the
value P (f |x) on x ∈ XI . This is a conditional lower
prevision.

The XI -support S(f) of a gamble f in KO∪I is given
by S(f) := {π−1

I (x) : x ∈ XI , fIπ
−1

I
(x) 6= 0}, i.e., it is

the set of conditioning events for which the restriction
of f is not identically zero. Here, and in the rest of
the paper, IA will be used to denote the indicator
function of the set A, i.e., the function whose value is
1 in the elements of A and 0 elsewhere. Also, for any
gamble f in the domain KO∪I of the conditional lower
prevision P (XO|XI), and any x ∈ XI , we shall denote
by G(f |x) the gamble Iπ

−1

I
(x)(f − P (f |x)), and by

G(f |XI) the gamble that takes the value G(f |πI(y))
in all y ∈ Xn.

These assessments can be made for any disjoint sub-
sets O, I of {1, . . . , n}, and therefore it is not un-
common to model a subject’s beliefs using a finite
number of different conditional previsions. Then, we
should verify that all the assessments modelled by
these conditional previsions are coherent with each
other. The first requirement we make is that for any
disjoint O, I ⊆ {1, . . . , n}, the conditional lower previ-
sion P (XO|XI) defined on KO∪I should be separately
coherent.2 In this case, where the domain is a lin-
ear set of gambles, separate coherence holds if and

2We refer to [4] for more general definitions of the following
notions in this section in terms of partitions, and for domains
that are not necessarily (these) linear sets of gambles.



only if the following conditions are satisfied for any
x ∈ XI , f, g ∈ KO∪I , and λ > 0:

1. P (f |x) ≥ infy∈π
−1

I
(x) f(y).

2. P (λf |x) = λP (f |x).

3. P (f + g|x) ≥ P (f |x) + P (g|x).

Separate coherence means on the one hand that, if
a subject knows that the variable XI has taken the
value x, he cannot raise the (conditional) lower previ-
sion of a gamble by considering the acceptable buying
transactions that are implied by other gambles in the
domain, and on the other hand that he should bet at
any odds on the event that XI = x after having ob-
served it. In general, separate coherence is not enough
to guarantee the consistency of the lower previsions:
conditional lower previsions can be conditional on the
values of many different variables, and still we should
verify that the assessments they provide are consis-
tent not only separately, but also with each other.
Formally, we are going to consider what we shall call
collections of conditional lower previsions.

Definition 2. Consider a set of conditional lower pre-
visions {P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} with re-
spective domains K1, . . . ,Km ⊆ L(Xn), where Ki

is the set of XOi∪Ii
-measurable gambles,3 for i =

1, . . . , m. Then, this is called a collection on Xn when
for each i 6= j in {1, . . . , m}, either Oi 6= Oj or Ii 6= Ij .

This means that we do not have two different condi-
tional lower previsions giving information about the
same set of variables XO, conditional on the same set
of variables XI .

Let P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
) be a collection

of conditional lower previsions, and let us see the dif-
ferent ways in which we can guarantee their consis-
tency.

Definition 3. P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
) are

weakly coherent when for any fi ∈ Ki, i = 1, . . . , m,
j ∈ {1, . . . , m}, f0 ∈ Kj , z ∈ XIj

,

sup
x∈Xn

[

m
∑

i=1

Gi(fi|XIi
) − G(f0|z)](x) ≥ 0.

Although this condition already assures that each of
the conditional lower previsions is separately coher-
ent, it does not prevent some inconsistencies from ap-
pearing: see [4, Example 7.3.5] for an example. This
is the reason why we consider a stronger notion, called
(joint or strong) coherence:

3We use Ki instead of KOi∪Ii
in order to alleviate the no-

tation.

Definition 4. P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
) are

coherent when for every fi ∈ Ki, i = 1, . . . , m,
f0 ∈ Kj , z ∈ XIj

, there exists some B ∈ {π−1
J (z)} ∪

⋃m

i=1 Si(fi) such that

sup
x∈B

[

m
∑

i=1

Gi(fi|XIi
) − G(f0|z)](x) ≥ 0,

where Si(fi) is the XIi
-support of fi.

In the next section, we prove a number of results that
will help to understand better the differences between
weak and strong coherence. But before we do that,
we introduce a special case that will be of special in-
terest for us: that of conditional linear previsions. We
say that a conditional lower prevision P (XO|XI) on
the set KO∪I is linear if and only if it is separately
coherent and moreover P (f + g|x) = P (f |x)+ P (g|x)
for any x ∈ XI and f, g ∈ KO∪I . Conditional lin-
ear previsions correspond to the case where a sub-
ject’s supremum acceptable buying price (lower pre-
vision) coincides with his infimum acceptable selling
price (or upper prevision) for any gamble on the do-
main. When a separately coherent conditional lower
prevision P (XO|XI) is linear we shall denote it by
P (XO|XI).

If we consider a collection of conditional linear previ-
sions P1(XO1

|XI1), . . . , Pm(XOm
|XIm

) with domains
K1, . . . ,Km, then they are coherent if and only if they
avoid partial loss : for every fi ∈ Ki, i = 1, . . . , m,
there is some B ∈

⋃m

i=1 Si(fi) such that

sup
x∈B

[

m
∑

i=1

Gi(fi|XIi
)](x) ≥ 0,

where, again, Si(fi) = {π−1
Ii

(x) : x ∈ XIi
, fiIπ

−1

Ii
(x) 6=

0}.

One interesting feature of conditional linear previsions
allows to easily characterise separate coherence: a
conditional lower prevision P (XO|XI) is separately
coherent if and only if it is the lower envelope of a
closed (in the weak-* topology) convex set of dominat-
ing conditional linear previsions, where P (XO|XI) is
said to dominate P (XO|XI) when for every XO∪I -
measurable gamble f , P (f |x) ≥ P (f |x) for every
x ∈ XI . Note, however, that in general a collection of
coherent conditional lower previsions is not necessar-
ily the lower envelope of a collection of coherent (i.e.,
avoiding partial loss) conditional linear previsions.

Finally, one interesting particular case is that where
we are given only an unconditional lower previ-
sion P on L(Xn) and a conditional lower prevision
P (XO|XI) on KO∪I . Then, weak and strong coher-
ence are equivalent, and they both hold if and only if,
for any XO∪I -measurable f and any x ∈ XI ,



(C1) P (G(f |XI)) ≥ 0

(C2) P (G(f |x)) = 0.

If both P and P (XO|XI) are linear previsions, they
are coherent if and only if for any XO∪I -measurable
f it holds that P (f) = P (P (f |XI)).

3 Weak and strong coherence

The following theorem gives a new characterisation of
the weak coherence of the conditional lower previsions
P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

).

Theorem 1. P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
) are

weakly coherent if and only if there is some coherent
lower prevision P on L(Xn) such that

{

P (Gi(f |XIi
)) ≥ 0 for any f in Ki

P (Gi(f |x)) = 0 for any f in Ki, x in XIi
.

Remark 1. When all the conditional previsions are
linear, then weak coherence is equivalent to the exis-
tence of a linear prevision that is coherent with each of
the conditionals: we can deduce from Theorem 1 and
[4, Section 6.5.5] that any linear prevision P dominat-
ing P will satisfy P (Gj(f |XIj

)) = 0 for any f ∈ Kj ,
and this implies that P is coherent with Pj(XOj

|XIj
).

When moreover all the spaces X1, . . . ,Xn are finite,
we deduce from Theorem 1 that the weak coherence of
the conditional previsions Pj(XOj

|XIj
), j = 1, . . . , m,

is equivalent to the existence of a linear prevision (a
finitely additive probability) on Xn inducing the con-
ditional previsions by means of Bayes rule. This is
not enough, however, for the conditional previsions
to be coherent. For a counterexample, see [4, Exam-
ple 7.3.5]. �

From this theorem, we can easily deduce the following
two results, that relate (weak or strong) coherence to
the existence of an unconditional lower prevision that
is (weakly or strongly) coherent with the collection.

Proposition 1. The conditional lower previ-
sions P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

) are coherent
if and only if there is some coherent uncondi-
tional lower prevision P on L(Xn) such that P ,
P 1(XO1

|XI1),. . . ,P m(XOm
|XIm

) are coherent.

Corollary 1. The conditional lower previsions
P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

) are weakly
coherent if and only if there is some coher-
ent lower prevision P on L(Xn) such that
P , P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

) are weakly
coherent.

These results allow us to understand a bit better
the conceptual difference between weak coherence and

(strong) coherence: weak coherence amounts to the
existence of a joint that is pairwise coherent with each
of the conditional lower previsions; coherence means
that there is a joint that is coherent with all the con-
ditional lower previsions, taken together.

4 Collection templates

In this paper we are interested in proving coherence
properties of lower previsions without assuming to
be given information about the numbers that make
up the lower previsions themselves, other than they
produce separately coherent assessments. For this we
need at least to focus on the ‘form’ of the lower pre-
visions, which we call template.

Definition 5. Let P j′(XOj′
|XIj′

) and
P j′′ (XOj′′

|XIj′′
) be two lower previsions on Xn.

We say that they have the same template if
Oj′ = Oj′′ and Ij′ = Ij′′ . The class of all the lower
previsions on Xn with the same template is just
called lower prevision template on Xn (of the generic
lower previsions in the class). We denote a lower
prevision template in the same way as we denote a
lower prevision (the distinction should be clear from
the context): i.e., by P j(XOj

|XIj
).

Definition 6. Similarly, we say that two collections
of lower previsions on Xn have the same template if
they contain the same number m of lower previsions,
and if it is possible to order the elements in each col-
lection in such a way that for all j in {1, . . . , m} the
two respective j-th lower previsions have the same
template. The class of all the collections on Xn with
the same template is just called collection template
on Xn (of the generic collection in the class). We
denote a collection template in the same way as we
denote a collection of lower previsions (again, the dis-
tinction should be clear from the context): i.e., by
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)}.

The notion of a collection template should be regarded
a special kind of assessment about a collection of lower
previsions, in the sense that knowing the template of a
collection means knowing that the collection belongs
to a certain set. An equivalent way to look at a col-
lection template is as a collection of lower prevision
templates. For this reason, we shall sometimes refer
to the lower previsions templates in a collection tem-
plate.

5 Coherence graphs

In this section, we introduce a graphical representa-
tion of collection templates based on directed graphs.
For this, we start by recalling some terminology from
graph theory.



A directed graph is a structure made up of a set of
nodes and a set of directed arcs between nodes. Two
nodes connected by an arc are also called its end-
points. A sequence of at least two nodes for which
each pair of adjacent nodes is an arc in the graph,
is called directed path between the first and the last
node in the sequence (also called origin and destina-
tion nodes, respectively). When the origin and des-
tination nodes coincide, and this is the only case of
repeated node in the sequence, we say that the path
is a directed cycle, or just a cycle, for short. Note that
a path uniquely identifies a sequence of arcs; for this
reason, by an abuse of terminology, we shall some-
times refer to the arcs of a path.

The predecessors of a node are all the nodes that have
a directed path towards the given node. The prede-
cessors for which there is a directed path made up of a
single arc, are called parents. The indegree of a node
is the number of its parents. A node with indegree
equal to zero is called a root. Similarly, the successors
of a node are all the nodes that can be reached from
the given node following directed paths. The succes-
sors for which there is a directed path made up of a
single arc, are called children. The outdegree of a node
is the number of its children. A node with outdegree
equal to zero is called a leaf.

The union of the set of parents and children of a node
is called the set of its neighbors. The union of two
graphs is a graph created by taking the union of their
nodes and their arcs, respectively.

Now we are ready to define the most important graph-
ical notion used in this paper.

Definition 7. Consider two finite sets Z =
{X1, . . . , Xn} and D = {D1, . . . , Dm} of so-called ac-
tual and dummy nodes, respectively. Call N := Z∪D
the set of nodes, and a given A ⊆ N × N the set of
arcs. The triple < Z,D,A > is called a coherence
graph on Z if the following properties hold:

(CG1) Z is non-empty.

(CG2) All neighbors of dummy nodes are actual nodes,
and vice versa.

(CG3) The set of the parents and that of the children of
any dummy node have an empty intersection.

(CG4) Dummy nodes are not leaves.

(CG5) Different dummy nodes do not have both the
same parents and the same children.

Figure 1 used in the Introduction is just an example
of a coherence graph, with actual nodes X1, . . . , X11.
Note that to make graphs easier to see, we represent

dummy nodes in a simplified way: we do not show
their labels and rather represent each of them simply
as a black solid circle (this does not pose a problem
since each dummy node is univocally identified by its
neighbors); moreover, when a dummy node has ex-
actly one parent and one child, we do not represent
the arrow entering the dummy node (this is not going
to cause ambiguity either).

Next, we show that there is a one-to-one relationship
between coherence graphs on Z = {X1, . . . , Xn} and
collection templates on Xn. To this extent, it is useful
to isolate the notion of a D-structure in a coherence
graph.

Definition 8. Given a dummy node D of a coherence
graph, we call D-structure the subgraph whose nodes
are D and its neighbors, and whose arcs are those
connecting D to its neighbors.

In the graph of Figure 1 there are 11 D-structures, one
per dummy node. For example, a D-structure is the
subgraph made by the actual nodes X9, X10, X11, by
the dummy node in the middle, and by the arcs that
connect them; another D-structure is the subgraph
made by X1, X2, the dummy node in between, and
the arc(s) connecting them.

At this point we consider two functions: the first one,
that we shall denote by Γ, maps a collection tem-
plate {P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)}, related to
the variables {X1, . . . , Xn} =: Z, into a coherence
graph on Z, with dummy nodes {D1, . . . , Dm}. This
mapping is determined by the following procedure:

(Γ1) Let Z := {X1, . . . , Xn} be the set of actual nodes.

(Γ2) Let D := {D1, . . . , Dm} be the set of dummy
nodes.

(Γ3) Let A := ∅.

(Γ4) For all j ∈ {1, . . . , m}, all i′ ∈ Ij , all i′′ ∈ Oj ,
add the arcs (Xi′ , Dj) and (Dj , Xi′′) to A.

The second function, that we denote by Γ−1, maps a
coherence graph on Z = {X1, . . . , Xn}, with dummy
nodes {D1, . . . , Dm}, into the collection template
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)}, related to the
variables {X1, . . . , Xn}. This mapping is determined
by the following procedure:

(Γ−11) Set the collection of lower prevision templates
equal to the empty set.

(Γ−12) For all j ∈ {1, . . . , m}, add P j(XOj
|XIj

) to the
collection template, where Oj and Ij are the set
of indexes of the children and the parents of Dj ,
respectively.



The idea behind the two functions is very simple:
identifying lower prevision templates in a collection
with D-structures in the related coherence graph, and
vice versa.

Consider the graph of Figure 1 once again. By apply-
ing Function Γ−1 we, unsurprisingly, obtain the col-
lection of lower prevision templates used as starting
example in the Introduction:

{P 1(X1), P 2(X2|X1), P 3(X3|X2), P 4(X4|X3),

P 5(X5, X6|X1), P 6(X2|X3), P 7(X7|X4), P 8(X8|X5),

P 9(X8|X6), P 10(X9, X10|X6, X7), P 11(X11|X9, X10)}.

It is easy then to see that Function Γ gives back
the original graph once it is applied to such a collec-
tion template. The reason is that the two functions
turn out to be each other’s inverses. This is shown
by the next theorem, which also allows us to prove
the wanted one-to-one relationship between coherence
graphs and collection templates.

Theorem 2. There is one-to-one relationship be-
tween coherence graphs and collection templates.

Next, we introduce some graph-based terminology
that is more directly relevant to our subsequent re-
sults.

Definition 9. We say that an actual node of a coher-
ence graph is a (potential) source of contradiction (or
conflict) if it has more than one parent or if it belongs
to a cycle.

Definition 10. A coherence graph without sources of
contradiction is said to be of type A1 : i.e., acyclic
and with maximum indegree for actual nodes equal
to one. The corresponding collection template is said
to be representable as a graph of type A1, or simply
A1-representable.

The graph in Figure 2 is clearly not of type A1, as
there are three sources of contradiction: X8, given its
two parents; X2, because it has two parents and also
because it is part of a cycle; and X3, because it is in
such a cycle, too.

Definition 11. Given a source of contradiction Z, call
block for Z, or BZ , the subgraph obtained by taking
the union of the D-structures of the dummy nodes
that are predecessors of Z.

Definition 12. Call superblock of a coherence graph,
any union of all the blocks that share at least one
actual node.

Figure 2 displays the only two different blocks of the
coherence graph under consideration: the block for X8

and that for X3 (note that the latter coincides with
the block for X2). Those blocks have the node X1 in
common (besides its dummy parent); their union is
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Figure 2: The areas delimited by closed lines contain
two blocks of the coherence graph: BX8

and BX3
.

Their union is a superblock.

thus a superblock, which is also the only one in the
graph.

Observe that there can be many configurations of
blocks in a superblock: a superblock can be made
up of a single block; if it is made up of more than one
block, it may be the case that some blocks coincide
(as BX2

and BX3
in Figure 2), that one of them is

included in another, or that two of them share only
some nodes (as BX3

and BX8
in the same figure).

We use the notion of superblock in order to build a
partition of the dummy nodes.

Definition 13. Call minimal partition of the dummy
nodes in a coherence graph, the partition whose el-
ements are the sets of dummy nodes in each su-
perblock, and the singletons made up of the remain-
ing dummy nodes. The corresponding partition of
{1, . . . , m} is denoted by B and is simply called the
minimal partition.

Note that B refers also to a partition of the related col-
lection template, given the one-to-one correspondence
between dummy nodes and lower prevision templates.
With respect to the graph in Figure 2, we obtain the
following partition of the related collection template:

{{P1(X1), P 2(X2|X1), P 3(X3|X2), P 5(X5, X6|X1),

P 6(X2|X3), P 8(X8|X5), P 9(X8|X6)},

{P 4(X4|X3)}, {P 7(X7|X4)}, {P 10(X9, X10|X6, X7)},

{P 11(X11|X9, X10)}}.

Moreover, note that for A1-representable collection
templates, the minimal partition is entirely made up
of singletons, because their coherence graph has no
sources of contradiction.



6 Coherence graphs as tools to prove

coherence

The following theorem gives us conditions under
which the coherence of some subsets of a collection
of conditional lower previsions implies the coherence
of all the elements in the collection. It shows that it is
sufficient that the conditional lower previsions whose
indices belong to the same element in B are coherent.

Theorem 3. Consider a collection
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} of sepa-
rately coherent conditional lower previsions
with known templates. Then, if for any
B ∈ B, {P j(XOj

|XIj
)}j∈B are coherent, then

{P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
)} are coherent.

The intuition behind the proof of the theorem is
the following. We exploit the properties of the
coherence graph to create a total order on a set
of coherent lower previsions strongly related to
P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

). That order allows
us to use the generalisation of the Marginal Exten-
sion Theorem (MET, in short) established in [3] to
show that the lower previsions in that set are co-
herent, and from this to derive the coherence of
P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

).

It is easy to see a similar result holds when we work
with weak coherence instead of coherence:

Theorem 4. Consider a collection
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} of sepa-
rately coherent conditional lower previsions
with known templates. Then, if for any
B ∈ B, {P j(XOj

|XIj
)}j∈B are weakly coherent,

then {P 1(XO1
|XI1), . . . , Pm(XOm

|XIm
)} are weakly

coherent.

Next, we investigate in which sense the partition B
given by Definition 13 is minimal. For this, we should
like to know if there are other partitions of {1, . . . , m}
that we can use for the same end, meaning that the
coherence of the conditional lower previsions within
each of the elements of the partition guarantees the
coherence of the collection template.

A first positive result in this regard is that the par-
tition B is indeed minimal when we are studying the
problem for weak coherence:

Proposition 2. Let B′ be a partition of
{1, . . . , m}, and assume that, for any B′

in B′, {P j(XOj
|XIj

)}j∈B′ are weakly coher-
ent. Then, this implies the weak coherence of
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} if and only if B
is finer than B′.

The sufficiency part in this proposition is actu-
ally Theorem 4, which can be proven in a simi-

lar way as Theorem 3. The idea for the neces-
sity part is to show that, when the necessary condi-
tion fails, we can create conditional linear previsions
P1(XO1

|XI1), . . . , Pm(XOm
|XIm

) that are not weakly
coherent and yet for all B′ in B′, {Pj(XOj

|XIj
)}j∈B′

are weakly coherent.

A basic step in the construction of such lower previ-
sions is to prove that for any given j ∈ {1, . . . , m}
and any x ∈ XOj

, we can define weakly coherent con-
ditional previsions P1(XO1

|XI1), . . . , Pm(XOm
|XIm

)
such that any compatible joint P satisfies
P (π−1

Oj
(x)) = 1. Even stronger, we can show

that any compatible joint with some of these con-
ditional previsions satisfies P (π−1

Oj
(x)) = 1. This is

proven using the following lemmas:4

Lemma 1. For any i = 1, . . . , n, let us con-
sider xi

1, x
i
2 ∈ Xi. Define the conditional previsions

P1(XO1
|XI1), . . . , Pm(XOm

|XIm
) with respective do-

mains K1, . . . ,Km by5

Pj(f |y) :=

{

f((xi
1)i∈Oj

, y) if y = (xi
1)i∈Ij

f((xi
2)i∈Oj

, y) otherwise,

for any j = 1, . . . , m, y ∈ XIj
and f ∈ Kj. Then,

P1(XO1
|XI1), . . . , Pm(XOm

|XIm
) are coherent.

Lemma 2. For any i = 1, . . . , n, let us con-
sider xi

1, x
i
2 ∈ Xi. Define the conditional previ-

sions P1(XO1
|XI1), . . . , Pm−1(XOm−1

|XIm−1
) with re-

spective domains K1, . . . ,Km−1 by

Pj(f |y) :=

{

f((xi
1)i∈Oj

, y) if y = (xi
1)i∈Ij

f((xi
2)i∈Oj

, y) otherwise,

for any y ∈ XIj
, f ∈ Kj , and define Pm(XOm

|XIm
)

by

Pm(f |y) := f((xi
2)i∈Om

, y)

for any y ∈ XIm
and f ∈ Km. Then,

P1(XO1
|XI1), . . . , Pm(XOm

|XIm
) are weakly coher-

ent.

However, a similar result to Proposition 2 does not
apply for coherence, due, among other things, to the
fact that the previsions in Lemma 2 are weakly coher-
ent but not coherent. As a consequence, there exist
instances of collection templates where the coherence
within the elements of a partition which is not coarser
than B guarantees the coherence of all of them. One
such case is given in the following example.

4Although the previsions in these lemmas correspond to 0-1
valued probabilities, this is not essential for the developments
made in the proof of the theorem; it is possible to obtain similar
results using probabilities that are not 0-1 valued.

5We are using there the one-to-one correspondence between
gambles on X j and gambles in Kj .



Example 1. Consider the collection template
{P 1(X1), P 2(X2|X1), P 3(X2, X3|X1)}. Then, the
minimal partition B associated to its coherence graph
is {1, 2, 3}. However, we can deduce the coherence
of the collection template using a smaller subset.
For this, we must prove first that the coherence
of P 2(X2|X1), P 3(X2, X3|X1) holds if and only if
for any X1 × X2-measurable gamble f and for any
x1 ∈ X1,

P 2(f |x1) = P 3(f |x1).

Using this property, we deduce that, when
P 2(X2|X1), P 3(X2, X3|X1) are coherent, then
{P 1(X1), P 2(X2|X1), P 3(X2, X3|X1)} are coherent
if and only if P 1(X1), P 3(X2, X3|X1) are. But
since P 1(X1), P 3(X2, X3|X1) are always coherent
because of the marginal extension theorem in [4,
Theorem 6.7.2], we deduce that the coherence of
P 2(X2|X1), P 3(X2, X3|X1) implies the coherence of
the collection template. �

It remains an open problem at this stage to deter-
mine a minimal partition with the property that the
coherence within each of the elements of the partition
guarantees the coherence of the collection template,
and that is minimal in the sense that it is finer than
any other partition with the same property.

In this respect, we can deduce from Theorem 3 that
the separate coherence of the conditional lower pre-
visions {P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} implies
their joint coherence when their associated coherence
graph is of type A1. Using Lemma 1, we can prove
that being of type A1 is also necessary for this prop-
erty.

Proposition 3. Consider a collection
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} of sepa-
rately coherent conditional lower previsions with
known templates. Then the separate coherence of
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} implies their
coherence if and only if their coherence graph is of
type A1.

Note on the other hand that, with respect to weak co-
herence, we also have a necessary and sufficient con-
dition for the separate coherence to imply the weak
coherence, because of Proposition 2:

Corollary 2. Consider a collection
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} of sepa-
rately coherent conditional lower previsions with
known templates. Then the separate coherence of
{P 1(XO1

|XI1), . . . , Pm(XOm
|XIm

)} implies their
weak coherence if and only if their coherence graph is
of type A1.

We should like to conclude this section remarking that

if the collection template is A1, then we can give the
following Bayesian sensitivity analysis interpretation:

Theorem 5. Consider a collection of separately co-
herent conditional lower previsions. If their coherence
graph is A1, then these lower previsions are lower en-
velopes of a family of coherent linear previsions.

The interest of this result lies in the fact that the
lower envelopes of a family of coherent conditional
linear previsions are coherent conditional lower pre-
visions, but the converse does not hold in general:
there exist instances of coherent conditional lower pre-
visions that are not even dominated by any family
of coherent conditional linear previsions. A sufficient
condition for the converse to hold is that the spaces
X1, . . . ,Xn are finite. This theorem shows that, if the
coherence graph is A1, then the coherent conditional
lower previsions are also lower envelopes of coherent
conditional linear previsions, no matter the cardinal-
ity of the spaces.

7 Discussion

Coherence can be regarded as the very essence of a
theory of personal probability. But working directly
with coherence can be particularly onerous.

This paper is an attempt to deal with this difficulty,
and to deliver tools that make checking coherence
easier. We have been inspired in this by the lesson
of graphical models, and have indeed defined a new
graphical model called a coherence graph.

Coherence graphs are means to render explicit the
structure behind the notion of coherence. We have
shown that such a structure induces a partition of the
available collection of lower previsions, with the char-
acteristic that the coherence within each set of the
partition implies the coherence of the overall collec-
tion.

This result is very general: it holds for lower previ-
sions and for any cardinality of the possibility spaces
involved. In particular, since it holds for lower previ-
sions, it is also applicable to determine the coherence
of a collection of conditional linear previsions, and
therefore is also useful in the precise context.

More generally speaking, we expect the results in this
paper to have substantial theoretical as well as prac-
tical consequences, whenever the focus is on the task
of proving coherence. They already appear to shed
light on specific aspects of coherence, thanks espe-
cially to coherence graphs of type A1. These graphs
correspond to collections of separately coherent lower
previsions that are coherent irrespective of the numer-
ical values that make them up.



Remember that we have shown that there are im-
portant conceptual differences between the notions
of weak and strong coherence proposed by Walley.
Weak coherence is equivalent to the existence of a
joint lower prevision that is coherent with each of the
assessments. In the particular case of conditional lin-
ear previsions and finite spaces, this is equivalent to
the existence of a joint mass function inducing each
of the conditionals by means of Bayes rule. The in-
troduction of the notion of strong coherence is needed
because some conditional lower previsions can have a
common joint and still be clearly incoherent with one
another. Remarkably, this happens even in the linear
and finite case mentioned above.

Taking this into account, we find it noteworthy that,
for the problem tackled here, weak and strong coher-
ence exhibit a similar behaviour: if we have a number
of assessments and all we know about them is that
each of them is separately coherent, we can guarantee
that they are weakly coherent exactly under the same
conditions for which we can deduce their joint coher-
ence: we just need the graph representing the col-
lection template to be A1. More generally, we have
established a partition of the graph for which weak
coherence inside implies weak coherence of them all,
and we have proven that strong coherence inside this
partition also implies the strong coherence of all the
assessments. It is worth pointing out that there are
also differences: we have shown that the minimal par-
tition obtained using a coherence graph is indeed min-
imal in the case of weak coherence and not necessarily
so for strong coherence.

Another point worth emphasising is the connection,
used repeatedly in the proofs of this paper, between
the A1 condition and the generalisation of the MET
established in [3]: the relationship arises as from the
A1 condition we can establish a total order on the con-
ditional lower previsions in our collection template,
and such an order is just what allows us to use the
generalised MET. In this way, we have also given an
easy graphical characterisation of the extent to which
the theorem can be applied: to A1-representable col-
lection templates.

Finally, we have proven that if the separate coherence
of the lower previsions in a collection template implies
their joint coherence (that is, if the associated coher-
ence graph is A1), then the conditional lower previ-
sions in the template are lower envelopes of coherent
linear previsions. This does not hold for all collec-
tions of coherent conditional lower previsions, as is
shown in [4, Section 6.6]. So it is remarkable that our
results lead naturally to a Bayesian sensitivity analy-
sis interpretation of the collection of conditional lower
previsions.

As a topic for future research, we should like to men-
tion the study of the coherence of collection templates
when we have some additional structural assessments,
such as considerations of irrelevance or independence.
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