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Abstract


Markov Decision Processes (MDPs) are extensively
used to encode sequences of decisions with probabilis-
tic effects. Markov Decision Processes with Imprecise
Probabilities (MDPIPs) encode sequences of decisions
whose effects are modeled using sets of probability dis-
tributions. In this paper we examine the computation
of Γ-maximin policies for MDPIPs using multilinear
and integer programming. We discuss the application
of our algorithms to “factored” models and to a recent
proposal, Markov Decision Processes with Set-valued
Transitions (MDPSTs), that unifies the fields of prob-
abilistic and “nondeterministic” planning in artificial
intelligence research.


Keywords. Markov Decision Processes with Im-
precise Probabilities, Γ-maximin criterion, multilinear
and integer programming.


1 Introduction


In this paper we are concerned with the computation
of policies, or plans, that aim at maximizing reward
over a possibly countably infinite sequence of stages.
At each stage, our decision maker finds herself in a
state and she must select an action. As a result of this
decision, she gets a reward, and she moves to a new
state. The process is then repeated. We focus on sit-
uations where transitions between states are modeled
by credal sets; that is, by sets of probability distribu-
tions. Thus we focus on Markov Decision Processes
with Imprecise Probabilities (MDPIPs), following a
sizeable literature that has steadily grown in the last


few decades. We review the basic concepts on MD-
PIPs in Section 2; we offer a relatively long review
as we attempt to capture, in a somewhat organized
form, various concepts dispersed in the literature.


There are several possible criteria that we might use to
evaluate policies in an MDPIP. The term optimal pol-
icy is used in this paper in connection with Γ-maximin
expected total discounted reward; that is, highest ex-
pected total discounted reward under the worst pos-
sible selection of probabilities.


We show how to reduce the generation of optimal
policies for an MDPIP to multilinear/integer program-
ming in Section 3. We also discuss in that section the
practical reasons to pursue such a programming solu-
tion. We comment on the relationship between multi-
linear programming and “factored” models in Section
4. We then move, in Section 5, to a recently pro-
posed special type of MDPIP that has particularly
pleasant properties and important applications, the
Markov Decision Process with Set-valued Transitions
(MDPSTs).


2 Background


In this section we review basic facts about MDPs,
MDPIPs, evaluation criteria, and algorithms.


2.1 MDPs


Markov Decision Processes (MDPs) are used in many
fields to encode possibly infinite sequences of decisions
under uncertainty. For historical review, basic techni-
cal development, and substantial reference to related







literature, the reader may consult books by Puter-
man [29] and Bertsekas [5]. In this paper we consider
MDPs that are described by:


• a countable set T of stages; a decision is made at
each stage.


• a finite set S of states.


• a finite set of actions A; the set of actions may be
indexed by states, but we simplify notation here
by assuming a single set of actions for all states.


• a conditional probability distribution Pt that
specifies the probability of transition from state
s to state r given action a at stage t. We assume
that probabilities are stationary (do no depend
on t) and write P(r|s, a).


• a reward function Rt that indicates how much is
gained (or lost, by using a negative value) when
action a is selected in state s at stage t. We
assume the reward function to be stationary and
write R(s, a).


We refer to the state obtained at stage t, in a par-
ticular realization of the process, as st; likewise, the
action selected at stage t is referred to as at.


The history ht of an MDP at stage t is the se-
quence of states and actions visited by the pro-
cess, [s1, a1, . . . , at−1, st]. The Markov assumption
that is adopted for MDPs is that P(st|ht−1, at) =
P(st|st−1, at); consequently:


P(ht|s1) = P(st|st−1, at−1)P(st−1|st−2, at−2)


. . . × P(s3|s2, a2)P(s2|s1, a1). (1)


A decision rule dt(s, t) indicates the action that is
to be taken in state s at stage t. A policy π is a
sequence of decision rules, one for each stage. A policy
may be deterministic or randomized; that is, it may
prescribe actions with certainty, or rather it may just
prescribe a probability distribution over the actions.
A policy may also be history-dependent or not; that
is, it may depend on all states and actions visited in
previous stages, or just on the current state. A policy
that is not history-dependent is called Markovian. A
Markovian policy induces a probability distribution
over histories through Expression (1).


We also assume that an MDP with infinite horizon
(that is, with infinite T ) may always stop with some
probability. In fact, we assume that the process stops
with geometric probability: the process stops at stage
t with probability (1 − γ)γt−1 (independently of all
other aspects of the process). Then γ is called the
discount factor of the MDP [29, p. 125].


2.2 MDPIPs


Additional realism and flexibility can be attached to
MDPs by allowing imprecision and indeterminacy in
the assessment of transition probabilities. A deci-
sion process with states, actions, stages and rewards
as described before, but where a set of probability
distributions is associated with each transition, has
been called a Markov Decision Process with Imprecise
Probabilities (MDPIP) by White III and Eldeib [44],
a name we adopt in this paper. Satia and Lave Jr.
use instead the name MDP with Uncertain Transition
Probabilities [31], in what may be the first thorough
analysis of this model in the literature; Harmanec uses
the term generalized MDP to refer to MDPIPs [21].


MDPIPs can represent incomplete and ambiguous be-
liefs about transitions between states; conflicting as-
sessments by a group of experts; and situations where
one wishes to investigate the effect of perturbations in
a “base” model. MDPIPs have also been investigated
as representations for abstracted processes, where de-
tails about transition probabilities are replaced by an
enveloping set of distributions [17, 20]. Similar mod-
els are encoded by the controlled Markov set-chains
by Kurano et al [26, 24]. Slightly less related are the
vector-valued MDPs by Wakuta [41]. Some of these
efforts have also adopted interval-valued rewards; in
this paper we focus on imprecision/indeterminacy
only in transition probabilities.


Thus an MDPIP is composed of a set of stages T ,
a set of states S, a set of actions A, a reward func-
tion Rt and sets of probability distributions, each con-
taining transition probabilities Pt. We assume T to
be the non-negative integers, S and A to be finite,
and A to be constant for all states. We assume Rt


to be a stationary function R(s, a). We also assume
stationarity for the sets K(r|s, a) of probability dis-
tributions. Note, however, that now we have to dis-
tinguish two situations. First, the sets of transition
probabilities may be identical across stages, while a
history of the process may be associated with dif-
ferent draws within these sets (that is, probabilities
are selected from sets that do not depend on t, but
the selection depends on t). We might refer to these
MDPIPs as set-stationary. Alternatively, it may be
that each history ht is associated with stationary
probability distributions P(st|st−1, at−1) that them-
selves satisfy the Markov condition (and of course
P(st|st−1, at−1) ∈ K(st|st−1, at−1)). We might refer
to the second MDPIPs as elementwise-stationary or
simply stationary. In this paper we only deal with
elementwise-stationary MDPIPs; in fact it does not
seem that set-stationary MDPIPs have received any
attention in the literature.







In the remainder of this paper we will use the follow-
ing notation and terminology regarding sets of proba-
bility distributions. A set of probability distributions
is called a credal set [27]. The credal set K(X) con-
tains distributions for variable X, and the conditional
credal set K(X|A) contains conditional distributions
for variable X given event A. Conditioning is ele-
mentwise: K(X|A) is obtained from K(X) by condi-
tioning every distribution in K(X) on the event A.
The notation K(X|Y ) represents a set of credal sets:
there is a credal set K(X|Y = y) for each nonempty
event {Y = y}. A set of credal sets K(X|Y ) is
separately specified if the joint credal set K(X,Y ) is
such that, whenever P(X|Y = y1) ∈ K(X|Y = y1),
P(X|Y = y2) ∈ K(X|Y = y2), then P(X|Y = y1) and
P(X|Y = y2) are conditional distributions obtained
from a single P(X,Y ) in K(X,Y ). That is, K(X|Y )
is separately specified if we can select conditional dis-
tributions independently from its sets, an assumption
we make throughout for our credal sets. We loosely
use K(r|s, a) to indicate a separately specified collec-
tion of credal sets, for a given action a, where r and
s refer to states.


Given a credal set K(X), we can compute lower
and upper probabilities respectively as P(A) =
infP∈K P(A) and P(A) = supP∈K P(A). We can
also compute lower and upper expectations for any
bounded function f(X) as E[f ] = infP∈K E[f ] and
E[f ] = supP∈K E[f ], and likewise for conditional
lower/upper probabilities/expectations. We assume
all credal sets to be closed, so infima and suprema
can be replaced by minima and maxima.


2.3 Evaluation criteria and algorithms


Given an MDP that starts at state s, we might eval-
uate a policy π by its expected reward:


Vπ(s) = Es,π


[


ET


[


T
∑


t=1


R(st, at)


]]


; (2)


that is, the expectation of the expected reward assum-
ing the process stops at stage T . Now if the process
has a geometric probability of stopping at T , with
parameter γ, we have [29, p. 126]:


Vπ,γ(s) = Es,π


[


∞
∑


t=1


γt−1R(st, at)


]


. (3)


We refer to Vπ,γ(s) as the expected total discounted
reward. There are other criteria to evaluate poli-
cies in MDPs; for example, the expected total re-
ward Es,π[


∑∞


t=1 R(st, at)], and the average reward


limT→∞(1/T )Es,π


[


∑T


t=1 R(st, at)
]


[5, 29]. These cri-


teria may be useful in specific problems but they are


usually less realistic than Expression (2) and the asso-
ciated discounted reward (3). We focus on the latter
in this paper.


When we move to MDPIPs, we find that several crite-
ria may be used to evaluate policies, even if we adopt
total discounted reward. Three possible criteria are:


• Select the policy that yields the largest value
of minVπ(s), where the minimum applies to all
transition probabilities, subject to the fact that
these probabilities must belong to given credal
sets [4]. That is, the optimal policy produces the
highest expected total discounted reward even
when probabilities are most unfavorable. This
is the Γ-maximin total discounted reward, where
an optimal policy starting from state s must yield


max
π


min
P


Vπ,γ(s),


where we append a subscript P in the minimiza-
tion operator, to emphasize that it applies with
respect to all transition probabilities that are im-
precise/indeterminate.


• Select the policy that yields, when starting from
state s,


max
π


max
P


Vπ,γ(s).


That is, both decisions and probabilities can be
selected so as to maximize expected total dis-
counted reward. This criterion is referred to as
Γ-maximax total discounted reward.


• Select any policy (or perhaps select all of those
policies) that maximizes Vπ,γ(s) for at least one
choice of transition probabilities. This is the cri-
terion of E-admissibility [27].


Note that Γ-maximin and Γ-maximax create a com-
plete order over policies, while E-admissibility is con-
tent to explore the partial order of policies induced
by credal sets in any convenient way. To date, most
authors have adopted the Γ-maximin criterion. An
exception is Harmanec’s algorithm [21] which employs
interval dominance (Harmanec presents his algorithm
as providing maximal policies, however [14, 38] ar-
gue that in fact is adopts interval dominance). Sev-
eral other criteria can be found in the literature
[14, 37, 38].


In this paper we focus on Γ-maximin total discounted
reward; we refer to it as ΓETDR (for Expected Total
Discounted Reward)1. The work of Satia and Lave


1It is not our goal to discuss here the adequacy of the Γ-
maximin criterion; it is investigated in this paper because of
its wide application in MDP problems. Other criteria will be
investigated by the authors in the future. For discussions on
the different criterions see [4, 25, 34, 32, 37, 42].







Jr. has derived several important results for this situ-
ation [31]. First, there exists a deterministic station-
ary policy that is optimal. Second, the optimal policy
induces a value function that is the unique solution of


V ∗(s) = sup
a


inf
P


(


R(s, a)+γ
∑


r


P(r|s, a)V ∗(r)


)


. (4)


We can take maximum and minimum in this equation
whenever the set of actions A is finite and the credal
sets K(r|s, a) have finitely many vertices. We assume
this to be true in the remainder of this paper.


Expression (4) can be compactly written as V ∗ =
VV ∗, by lumping the supremum, infimum, and sum-
mation into the operator V. Whenever the transition
probabilites are fixed (or are precisely specified) at
some value P , we indicate it through the operator VP


(where the infimum is either suppressed or unneces-
sary). In fact, for an MDP with transition probabil-
ities P , the optimal policy satisfies V ∗ = VP V ∗, the
Bellman equation.


2.4 Algorithms for MDPs and MDPIPs


Consider now algorithms that solve the Bellman equa-
tion. There are three “classic” algorithms for generat-
ing optimal policies in MDPs: value iteration, policy
iteration, and reduction to linear programming [5, 29].
Most of the literature focuses on value or policy itera-
tion. However, there are at least three reasons to pay
attention to linear programming solutions to MDPs.
First, a linear program produces an exact solution
without the need to specify any stopping criteria (as
needed for value and policy iteration). This property
is useful in practice and particularly important while
testing other algorithms. Second, several algorithms
based on approximating the value function by lower
dimensional functions are based on linear program-
ming [19, 22, 33]. Third, and perhaps more impor-
tantly, linear programs seem to offer the only orga-
nized way to deal with problems where maximization
of expected total discounted reward is subject to ad-
ditional constraints on expected rewards [1, 29].


The linear programming algorithm for MDPs solves
the equation V ∗ = VP V ∗ for the precisely specified
transition probabilities as follows [16]:


min
V ∗


∑


s


V ∗(s) (5)


s.t. V ∗(s) ≥ R(s, a) + γ
∑


r


P(r|s, a)V ∗(r),


where each pair (s, a) corresponds to a constraint.


Policy and value iteration have known counterparts
for ΓETDR. Satia and Lave Jr. presented a policy


iteration algorithm for ΓETDR. The results by Satia
and Lave Jr., and by Denardo [15], produce a value
iteration algorithm as indicated by White III and El-
deib [44]; the same algorithm was later derived in the
special case of Bounded-parameter Markov Decision
Processes (BMDPs) [17]. The value iteration algo-
rithm starts with a candidate value function V ′


0(s)
and iterates:


V ′
i+1 = VV ′


i (6)


until ||V ′
i+1 − V ′


i || is sufficiently small.2 Convergence
of this procedure is based on the fact that the operator
V is a contraction mapping.3


3 A multilinear/integer solution for
ΓETDR


Expression (5) describes the linear program for solv-
ing MDPs with precisely specified probabilities. It
does not seem possible to produce a linear program-
ming solution for ΓETDR; however, as we show in this
section, it is possible to generate solutions using well
known programming problems. We do not attempt
to produce algorithms that surpass value/policy iter-
ation in execution time; rather, our reasons to pursue
a programming solution mirror the reasons why oth-
ers have investigated linear programming for MDPs
(summarized in Section 2.4). First, the results pro-
duced by multilinear and integer programming, and in
particular the latter, depend on combinatorial proper-
ties of credal sets, and can be produced exactly; this is
useful, for instance, while evaluating other algorithms
that only promise ǫ-optimal policies. Second, several
approximate algorithms for MDPs that can possibly
be extended to MDPIPs depend on linear program-
ming; we conjecture that these potential extensions
to MDPIPs will depend on the results in this section.
In fact, it seems that multilinear programming is un-
avoidable in factored models, as we discuss in Section
4. Third, solutions based on optimization seem to be
the only way to handle constraints on expected re-
wards, a topic we wish to pursue in connection with
planning (Section 5).


Our main result is, in essence, simple. We start from
Expression (4), and note that its solution can be found
by solving the following optimization problem:


min
V ∗


∑


s


V ∗(s) (7)


s.t. V ∗(s) ≥ R(s, a) + γ min
P


∑


r


P(r|s, a)V ∗(r).


2The norm ||V || = maxs V (s) is typically used in the liter-
ature.


3A mapping V : U → U , where U is a complete normed
linear space, is a contraction mapping iff ||Vu1 − Vu2|| ≤
γ||u1 − u2|| for some γ ∈ [0, 1).







This can be shown to be an instance of bilevel pro-
gramming [8, 40]. Similar problems have been tack-
led before in connection with linear programming
with uncertainty, with obvious application to ΓETDR
[2, 3]. Current algorithms for bilevel programming are
complex, and convergence guarantees are not as sharp
as one would like. It would be interesting to reduce
Program (7) to a form that were closer to existing,
well studied optimization problems. We do this by
reducing Program (7) to multilinear and then to in-
teger programming.


The multilinear program we consider is:


min
V ∗,P


∑


s


V ∗(s) (8)


s.t. V ∗(s) ≥ R(s, a) + γ
∑


r


P(r|s, a)V ∗(r).


Denote by (V ∗
R, P ∗


R) a solution of Program (7) and
by (V ∗


G, P ∗
G) a solution of Program (8). In order to


use Program (8), we must prove that V ∗
G and V ∗


R are
identical.


Theorem 1 V ∗
G = V ∗


R


Proof. Let ΩR and ΩG be the solution spaces for
Programs (7) and (8) respectively. We prove that ΩR


is a subset of ΩG. Then, we show that no solution in
ΩG \ΩR can have better performance than one in ΩR.
We have:


ΩR = {(V, P ) : V ∈ V, P = arg min
P∈P


∑


r


P(r|s, a)V (r)},


ΩG = {(V, P ) : V ∈ V, P ∈ P}.


Given that the solution space in the second case is
the whole space V × P, while in the first case P can
only be in a subspace V × PR of V × P (hence re-
stricted), Program (8) produces a value function at
least as low as Program (7). So, V ∗


G ≤ V ∗
R, because


ΩG ⊃ ΩR. Now suppose V ∗
G < V ∗


R. For a state s ∈ S
we have V ∗


G(s) = R(s, a)+γ
∑


r P ∗
G(r|s, a)V ∗


G(r), with
P ∗


G(r|s, a) 6= arg minP


∑


r P(r|s, a)V (r). If we take
P ′(r|s, a) = arg minP


∑


r P(r|s, a)V (r), then V ′(s) =
R(s, a) + γ


∑


r P ′(r|s, a)V ∗
G(r) < V ∗


G(s) and V ∗
G is not


optimal. Since V ∗
G is optimal (given that it considers


the whole state space), then V ∗
G 6< V ∗


R. This implies
that V ∗


G = V ∗
R. •


Apparently we have moved from a difficult problem
(bilevel programming) to another difficult problem
(multilinear programming). However, the significance
of this result is that multilinear programming is a
widely studied field, with close connections to geo-
metric and linear programming [18, 23, 28, 35, 39].
Implementations can deal with hundreds of variables;


in our tests we resort to Sherali and Adams’ algorithm
[35], a branch-and-bound scheme based on linear pro-
gramming relaxations. Our implementation is an op-
timized version of this algorithm, that has been used
to solve a variety of large and challenging multilinear
programs [10, 11, 13, 12]. The examples presented
later in this section were solved using this implemen-
tation.


An even more interesting result obtains if we assume
that the vertices of credal sets K(r|s, a) are known.
Consider a list of vertices (each vertex is a distribu-
tion over S) for a credal set K(r|s, a), {p1, . . . , pM}.
Every distribution in this credal set can be expressed
as a convex combination


∑M


i=1 αipi where αi ≥ 0 and
∑


i αi = 1. We can then write our goal as:


min
V ∗,αi,s,a


∑


s


V ∗(s) (9)


s.t. V ∗(s) ≥ R(s, a) +


γ
∑


r


∑


i


αi,s,api(r|s, a)V ∗(r),


αi,s,a ≥ 0,
∑


i


αi,s,a = 1,


where we explicitly indicate that αi,s,a depends on
(s, a).


We now use the fact that a multilinear program
has a maximum at the vertices of the credal sets;
thus we necessarily have αi,s,a ∈ {0, 1} at a solu-
tion. We then resort to the following transformation
to produce an integer program out of the multilin-
ear program (9), just assuming that we can bound
V ∗ from above and below (such bounds can be pro-
duced quite generally using results by White III and
Eldeib [44]). First, we replace V ∗(r) ∈ [l, u] by
l + (V ∗(r) − l), and create a new variable βr =
V ∗(r) − l ∈ [0, u − l]. Each αi,s,api(r|s, a)V ∗(r) is
thus replaced by αi,s,api(r|s, a)l + αi,s,api(r|s, a)βr.
Note that αi,s,api(r|s, a)l is easy to evaluate. As
αi,s,a can be restricted to 0 or 1, we take each term
αi,s,api(r|s, a)βr and replace αi,s,aβr by a new vari-
able βi,r,s,a. To ensure that this replacement does
not change the original problem, we introduce linear
restrictions:


0 ≤ βi,r,s,a ≤ βr,


βi,r,s,a ≤ αi,s,a(u − l),


βr − (u − l) + αi,s,a(u − l) ≤ βi,r,s,a.


The first and second restrictions are obvious (limi-
tations on βr and αi,s,a. The last restriction im-
poses the following. When αi,s,a = 1, βr ≤ βi,s,a.
However, since from the first restriction βi,s,a ≤ βr,
then βi,s,a = βr, and the full V ∗(r) will be consid-
ered. If αi,s,a = 0, then βr − (u − l) ≤ βi,r,s,a, but







βr−(u−l) < 0 (since βr ≤ (u−l)), so βi,r,s,a = 0, and
this non-optimal pair state-action will not be consid-
ered.


We end up with the following integer program:


min
V ∗,αi,s,a


∑


s


V ∗(s) (10)


s.t. V ∗(s) ≥ R(s, a) +


γ
∑


r


∑


i


[αi,s,api(r|s, a)l +


pi(r|s, a)βi,r,s,a]


αi,s,a ≥ 0,
∑


i


αi,s,a = 1


βr = V ∗(r) − l


0 ≤ βr ≤ u − l


0 ≤ βi,r,s,a ≤ βr


βi,r,s,a ≤ αi,s,a(u − l)


βr − (u − l) + αi,s,a(u − l) ≤ βi,r,s,a


We close this section with two examples of MDPIPs.
We focus on multilinear programming solutions; later
we will consider examples where integer programming
is used.


3.1 A small MDPIP


This is a very simple, abstract example. Consider two
states, s1 and s2. In each state, the decision maker
can choose between two actions. In s1 the transi-
tion probability for both actions are imprecisely spec-
ified, while transition probabilities in s2 are precisely
specified. Probabilities and rewards are presented in
Table 1 (left). The transition probabilities are de-
fined from the states in the first column (origin states)
to the states on the first row under P (destination
states). The solution given by multilinear program-
ming leads to the optimal solution; the value function
V ∗ is shown in Table 1 (right).


3.2 Planning airplane maintenance through
MDPIPs


This example is based on a problem described by
White [43, p. 171]:


An airline classifies the condition of its planes
into three categories, viz. excellent, good and
poor. The annual running costs for each cate-
gory are 0.25 × 106, 106 and 2 × 106 [monetary
units] respectively. At the beginning of each
year the airline has to decide whether or not
to overhaul each plane individually. With no
overhaul a plane in excellent condition has prob-
abilities of 0.75 and 0.25 of its condition being


excellent or good, respectively, at the beginning
of the next year. A plane in good condition has
probabilities of 0.67 and 0.33 of its condition be-
ing good or poor, respectively, at the beginning
of the next year. A plane in poor condition will
remain in a poor condition at the beginning of
the next year. An overhaul costs 2 × 106 and
takes no significant time to do. It restores a
plane in any condition to an excellent condition
with probability 0.75, and leaves it in its current
condition with probability 0.25. The airline also
has an option of scrapping a plane and replacing
it with a new one at a cost of 5 × 106. Such a
new plane will be in excellent condition initially.
There is an annual discount factor of γ = 0.5.


We consider a variant of this problem where proba-
bilities are specified as in Table 2 (left). Multilinear
programming produces the value function in Table 2
(right).


4 Factored MDPs


The specification of transitions between states is par-
ticularly burdensome in large MDPs. One strategy
that has been often employed is to encode transi-
tion probabilities in factored form; usually this means
that transition probabilities are encoded by Bayesian
networks [7]. Here the state space is defined by the
configurations of variables {X1, . . . ,Xn}. We denote
by Xi,t the ith variable at stage t. For each action
a, we specify a bipartite directed acyclic graph con-
taining 2n nodes denoted by X+


i and X−


i ; node X−


i


and X+
i represent respectively Xi,t−1 and Xi,t for any


t > 0. One layer of the graph contains nodes X−


i for
all i, and no edge between them. The other layer con-
tains nodes X+


i for all i, and edges between them.
Edges are allowed from nodes in the first layer into
the second layer, and also between nodes in the sec-
ond layer. We denote by pa(X+


i ) the parents of X+
i


in the graph. The graph is assumed endowed with the
following Markov condition: a variable X+


i is condi-
tionally independent of its nondescendants given its
parents. This implies the following factorization of
transition probabilities:


P(X+
1 , . . . ,X+


n ) =
n
∏


i=1


P(X+
i |pa(X+


i )). (11)


Now suppose that conditional probability distribu-
tions P(X+


i |pa(X+
i )), or a subset of them, are not


known precisely, but rather up to inclusion in credal
sets K


(


X+
i |pa(X+


i )
)


. We assume the Markov condi-
tion to operate over all combinations of distributions
from these credal sets, thus producing a possibly large
set of joint distributions, each one of them satisfying







S A P R(s, a)
s1 s2


s1 a1,1 [0,0.5] [0.5,1] 7
a1,2 [0,0.2] [0.8,1] 3


s2 a2,1 0.3 0.7 -1
a2,2 0.6 0.4 9


V ∗(s1) 21.486474
V ∗(s2) 18.108099
∑


s V ∗(s) 39.594573


Table 1: Specification of simple MDPIP example (left), and value function V ∗ (right).


S A P R(s, a)
s1 s2 s3


a1,1 [0.5,1] [0,0.4] [0,0.1] −0.25 × 106


s1 a1,2 1 0 0 −2 × 106


a1,3 1 0 0 −5 × 106


a2,1 0 [0.67,1] [0,0.33] −106


s2 a2,2 [0.75,1] [0,0.25] 0 −2 × 106


a2,3 1 0 0 −5 × 106


a3,1 0 0 1 −2 × 106


s3 a3,2 [0,0.25] [0.5,0.8] [0,0.25] −2 × 106


a3,3 1 0 0 −5 × 106


V ∗(s1) -1265664.1604
V ∗(s2) -2496240.6015
V ∗(s3) -4000000.0
∑


s V ∗(s) -7761904.7619


Table 2: Specification of MDPIP for plane maintenance (left), and value function V ∗ (right).


the factorization in Expression (11) — the resulting
structure is a credal network for each action [9].


The main point of this section is to indicate that Ex-
pression (11) defines a multilinear product for the
probabilities that appear in Program (8). Thus,
the multilinear character of Program (8) is left un-
changed: the computation of Γ-maximin policies is
still a matter of multilinear programming. The devel-
opment of algorithms that produce optimal policies
and that exploit the factorization in Expression (11)
is left for the future; this is a promising avenue of re-
search as the most advanced algorithms for factored
MDPs do use all available structure encoded in the
factorization [19, 22].


5 MDPSTs


In this section we explore the properties of a class
of MDPIPs that have an important application in
the field of artificial intelligence planning. Roughly
speaking, planning in artificial intelligence focuses on
sequential decision making problems that are speci-
fied using high-level languages. There are many vari-
ants of AI planning, depending on the properties of
the specification language; for example, we have de-
terministic planning, where actions have determinis-
tic effects; probabilistic planning, where actions have
probabilistic effects; and nondeterministic planning,
where an action may cause a transition to a set of
states without any clue at to what state will be moved


into [30]. The latter name is somewhat unfortunate as
“nondeterminism” is an overloaded term, but it is the
usual terminology in the field. Typically deterministic
and nondeterministic planning are tackled by search
through state spaces, while probabilistic planning is
tackled by generation of equivalent MDPs.


There has been considerable effort in the field of
AI planning to develop general algorithms that can
be instantiated for different types of planning prob-
lems [6]. However, until recently no model consid-
ered actions with simultaneously “probabilistic” and
“nondeterministic” effects. In response to this situ-
ation, Trevizan et al. have proposed a jointly prob-
abilistic/nondeterministic framework, based on MD-
PIPs [36]. Their proposal is based on a class of
MDPIPs, called Markov Decision Processes with Set-
valued Transitions (MDPSTs), defined as follows.


An MDPST is composed by a set of stages T , a set
of states S, a set of actions A, a reward function R,
a state transition function F (s, a) mapping states s
and actions a ∈ A into reachable sets of S, i.e., into
nonempty subsets of S, and a set of mass assignments
m(k|s, a) for all s, a ∈ A, and k ∈ F (s, a). Here we
also assume T to be the non-negative integers, S and
A to be finite, A to be constant for all states, and
R(s, a) to be a stationary function. The state transi-
tion function F (s, a) and mass assignments m(k|s, a)
are also stationary. MDPSTs satisfy a simplified ver-







sion of Expression (4) [36]:


V ∗(s) = max
a∈A





R(s, a)+γ
∑


k∈F (s,a)


m(k|s, a)min
r∈k


V ∗(r)





 .


(12)
MDPSTs form a strict subset of MDPIPs [36]; thus
Programs (8) or (10) can be used to solve MDPSTs.
These solutions require an enumeration on mass as-
signments m(k|s, a). However we can produce simpler
programs if we study Expression (12) carefully.


Given any action a ∈ A, we can collect all feasi-
ble k ∈ F (s, a), and define a binary vector I(s, a)
with as many elements as sets of states in F (s, a),
such that Ii(s, a) ∈ {0, 1} for i ∈ {1, . . . , N}, and
∑


i Ii(s, a) = 1. Because each Ii(s, a) can only be
equal to 0 or 1, and their sum is equal to one, only
an unique Ii(s, a) can be equal to one at a time. We
now write Expression (12) as:


V ∗(s) = max
a∈A


R(s, a) + (13)


γ
∑


k∈F (s,a)


m(k|s, a)


k
∑


i=1


Ii(s, a)V ∗(ri).


We now transform each product Ii(s, a)V ∗(ri) into
a new variable, following the procedure outlined in
Section 3. We first replace V ∗(ri) by l + (V ∗(ri)− l),
where V ∗(ri) ∈ [l, u]; we then define βi = V ∗(ri) − l,
with βi ∈ [0, u − l]. We define a variable βi,s,a =
Ii(s, a)βi, and add the necessary constraints to the
optimization problem. The final integer program is
very similar to the Program (10):


min
V ∗,I


∑


s


V ∗(s) (14)


s.t. V ∗(s) ≥ R(s, a) +


γ
∑


k


∑


i


[Ii(s, a)m(k|s, a)l +


m(k|s, a)βi,s,a]


Ii(s, a) ≥ 0,
∑


i


Ii(s, a) =


βi = V ∗(ri) − l


0 ≤ βi ≤ u − l


0 ≤ βi,s,a ≤ βi


βi,s,a ≤ Ii(s, a)(u − l)


βi − (u − l) + Ii(s, a)(u − l) ≤ βi,s,a.


This is a very useful transformation, once integer
programming is much simpler than multilevel pro-
gramming. There are many powerful integer program
solvers that guarantee global optimal solutions, where
multilevel program solvers only achieve global opti-
mals in certain specific cases.


5.1 A small MDPST


Consider 3 states, s1, s2 and s3. At state si, there are
actions ai,1 and ai,2. All actions define probabilistic
transitions from one state to itself or to the set com-
posed by the other 2 states, however with different
assignments of rewards and transition probabilities.
The values assigned to each state and action can be
found in Table 3. The optimal solution was obtained
by solving an integer program.


5.2 Probabilistic/nondeterministic planning
of airplane maintenance


Consider the example of airplane maintenance in Sec-
tion 3. Suppose that transition probabilities follow
Table 4 (left); a transition that “fills” more than a
column is a nondeterministic one. The optimal solu-
tion obtained can be seen in Table 4 (right).


6 Conclusion


We have reviewed the basic theory of MDPIPs under
the criterion of Γ-maximin expected total discounted
reward, and we have shown how to produce policies
using multilinear and integer programming. This type
of solution may be useful to handle problems with
further constraints on expected rewards, and to deal
with factored models and factored approximations.
We plan to continue the present work by exactly ad-
dressing such constraints and factorizations.


We have then looked into the recently proposed MDP-
STs. We have briefly reviewed the application of
these processes as a unifying language for “proba-
bilistic” and “nondeterministic” planning, and then
showed how these processes nicely lead to integer pro-
gramming solutions. As indicated previously, one of
the reasons to investigate a programming solution for
MDPIPs is the promise it holds for treating problems
with constraints on policy. For instance, it may be
required that a policy, besides maximizing minimum
expected total discounted reward, also guarantees the
probability of some set of states to be higher than
some value (in practice: maximization of profit for a
company, subject to the probability that a client is left
unattended being smaller than a given value). Markov
decision processes subject to such constraints are
called constrained MDPs [1, 29], and the main method
of solution there is linear programming. We conjec-
ture that constrained MDPIPs will require solutions
based on multilinear/integer programming. This will
be even more important in the context of MDPSTs,
because “nondeterministic” planning is usually asso-
ciated with contraints on policies.







S A P R(s, a)
si S \ {si}


s1 a1,1 0.8 0.2 5
a1,2 0.1 0.9 -1


s2 a2,1 0.8 0.2 4
a2,2 0.3 0.7 7


s3 a3,1 0.7 0.3 3
a3,2 0.25 0.75 9


V ∗(s1) 17.670251
V ∗(s2) 19.820789
V ∗(s3) 22.153796
∑


s V ∗(s) 59.644836


Table 3: Specification of small MDPST (left), and value function V ∗ (right).


S A P R(s, a)
s1 s2 s3


a1,1 0.5 0.5 −0.25 × 106


s1 a1,2 1 0 0 −2 × 106


a1,3 1 0 0 −5 × 106


a2,1 0 1 −106


s2 a2,2 0.75 0.25 0 −2 × 106


a2,3 1 0 0 −5 × 106


a3,1 0 0 1 −2 × 106


s3 a3,2 0.8 0.2 −2 × 106


a3,3 1 0 0 −5 × 106


V ∗(s1) -1666666.6666
V ∗(s2) -3000000.0
V ∗(s3) -4000000.0
∑


s V ∗(s) -8666666.666


Table 4: Specification of MDPST for plane maintenance (left), and value function V ∗ (right).
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