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Abstract

Credal networks are imprecise probabilistic graphical
models generalizing Bayesian networks to convex sets
of probability mass functions. This makes credal net-
works particularly suited to capture and model expert
knowledge under very general conditions, including
states of qualitative and incomplete knowledge. In
this paper, we present a credal network for risk evalu-
ation in case of intrusion of civil aircrafts into a no-fly
zone. The different factors relevant for this evalua-
tion, together with an independence structure over
them, are initially identified. These factors are ob-
served by sensors, whose reliabilities can be affected
by variable external factors, and even by the behavior
of the intruder. A model of these observation mecha-
nisms, and the necessary fusion scheme for the infor-
mation returned by the sensors measuring the same
factor, are both completely embedded into the struc-
ture of the credal network. A pool of experts, facil-
itated in their task by specific techniques to convert
qualitative judgments into imprecise probabilistic as-
sessments, has made possible the quantification of the
network. We show the capabilities of the proposed
network by means of some preliminary tests referred
to simulated scenarios. Overall, we can regard this ap-
plication as an useful tool to support military experts
in their decision, but also as a quite general imprecise-
probability paradigm for information fusion.

Keywords. Credal Networks, Information Fusion,
Sensor Management, Tracking Systems.

1 Introduction

In the recent times, the establishment of a no-fly zone
surveyed by the Air Force around important poten-
tial targets has become usual practice, also in neutral
states like Switzerland, because of the potential dan-
ger of terror threats coming from the sky. In this
paper we refer in particular to the Swiss case, where
no-fly zones are usually established to protect inter-

national conferences, like the World Economic Forum
in Davos, or to protect strategic buildings, like for
example nuclear power plants and dams.

A no-fly zone for the protection of a single strate-
gic object usually consists of a circular-shaped region
with a radius of several kilometers around the target
to defend. All the aircrafts flying in this region with-
out the required permissions are considered intruders.
The no-fly zone is usually divided in two concentric
regions: the external no-fly zone is a large region, with
many sensors, devoted to the identification of the in-
truder, while the internal no-fly zone is a small region,
containing the object to protect, where fire is eventu-
ally released if the intruder is presumed to have bad
aims.

But not all the intruders have the same intentions:
there are intruders with bad aims (or renegades), in-
truders with provocative aims, and erroneous intrud-
ers. Since only renegades represent a danger for the
protected object, the recognition of the intruder’s aim
plays a crucial role in the following decision, which, if
it is wrong, is clearly critical. This is the recognition
problem we address in this paper.

This problem is complex for many reasons: (i) the risk
evaluation usually relies on qualitative expert judg-
ments; (ii) it requires the fusion of the information
coming from different sensors, and this information
can be incomplete or partially contradictory; (iii) dif-
ferent sensors can have different levels of reliability,
and the reliability of each sensor can be affected by
exogenous factors, as geographical and meteorological
conditions, and also by the behavior of the intruder.
A short review of the problem and some detail about
these difficulties is reported in Section 2.

Nowadays, the problem is faced by military experts
without the support of any mathematical model. The
reason is partly the difficulty of finding a suitable
mathematical paradigm for this kind of problems.

In this paper, we propose credal networks (Section 3)



as a mathematical paradigm for the modeling of mil-
itary identification problems. Credal networks are
imprecise-probability graphical models representing
expert knowledge by means of sets of probability mass
functions, which are particularly suited for modeling
and doing inference with qualitative, incomplete, and
also conflicting information.

More specifically, we have developed a credal net-
work for the considered identification problem. This is
achieved by a number of sequential steps: determina-
tion of the factors relevant for the risk evaluation and
identification of a causal structure between them (Sec-
tion 4.1); quantification of this qualitative structure
by imprecise probabilistic assessments (Section 5.1);
determination of a qualitative model of the observa-
tion mechanism associated to each sensor, together
with the necessary fusion scheme of the information
collected by the different sensors (Section 4.2); quan-
tification of this model by probability intervals (Sec-
tion 5.2). An analysis of the main features of our
imprecise-probability approach to information fusion
is indeed reported in Section 6.

The credal network is finally used to evaluate the level
of risk, which is simply the probability of the risk fac-
tor conditional on the information collected by the
sensors in a given scenario. A description of the ap-
proximate procedure used to update the network, to-
gether with the results of a preliminary test, is re-
ported in Section 7.

Summarizing, we can regard this model as a practical
tool to support the military experts in their decisions
for this particular problem. But, at the same time,
this credal network can be regarded as a prototypical
modeling framework for general identification prob-
lems requiring information fusion.

2 Military Aspects

This section is focused on the main military aspects of
the identification problem. In particular, we explain:
(i) what are the possible intentions of the intruder, (ii)
what are the factors that are observed to determine
the intention of the intruder, (iii) what are the sensors
used to determine these factors.

We consider only civil aircrafts; military aircrafts and
flying weapons like rockets or cruise missiles are not
taken into consideration. For the possible intentions
of the intruder, four categories can therefore be con-
sidered: renegade, agent provocateur, erroneous in-
truder and damaged intruder. A renegade is an air-
craft that has entered the no-fly zone with the pur-
pose of attacking the protected object using itself as
weapon; terrorists belong to this category. The pur-

pose of an agent provocateur is the provocation of the
protection structure for demonstrative purposes. An
agent provocateur usually knows exactly what it is
doing and does not want to die. An erroneous in-
truder has no particular purpose: it has entered the
no-fly zone by mistake, because of bad preparation of
the flight or due to a bad level of training of the pilot.
Finally, a damaged intruder is an aircraft without bad
aims that is incurring an emergency situation due to
technical problems. A damaged intruder enters a no-
fly zone because it cannot avoid it or because it is in a
situation of panic. In our model, the intention of the
intruder is modeled as a random variable, called the
risk factor, whose possible values are the four cases
described above.

The intruder is assumed to be observed for a suffi-
ciently long time window, when it is flying in the ex-
ternal no-fly zone. The factors observed during this
period to determine its intention can be divided into
two categories: factors describing the flight behavior
and factors describing the reactions. For this first cat-
egory we consider: height, changes in height, absolute
speed, flight path and type of aircraft. These factors
are observed in a passive way, without any interaction
with the intruder. The factors belonging to the sec-
ond category are the transponder (mode 3/A), the re-
action to radio communication with the civil Air Traf-
fic Control (ATC), the reaction to radio communica-
tion with the Air Defence Direction Center (ADDC)
and, finally, the reaction to interception. The common
point of these factors is that they require an interac-
tion (code emission, radio communication or visual
contact) between the intruder and the civil or mili-
tary control.

All these factors are regarded as random variables,
taking only a finite number of possible values. Vari-
ables which are not intrinsically categorical, are dis-
cretized. For instance, regarding the height above the
ground maintained by the intruder during the obser-
vation period, we are not interested in the precise el-
evation of the aircraft, but on its flight level. Accord-
ing to military practice, the airspace is divided in four
levels: very low (0-150m), low (150-3’000), high

(3’000-7’000m) and very high (above 7’000m).

Many sensors can be used to determine the factors
described above. In our application the ADDC works
as a centralized decision center receiving all the infor-
mation collected by the sensors in order to evaluate
the intention of the intruder. The network formed by
the ADDC and all the sensors is called the identifi-
cation architecture. The sensors in the identification
architecture are divided in four main categories:

• Signals intelligence. Sensors belonging to this



category detect signals emitted by the intruder.
In our application, the only sensor of this type is
the secondary surveillance radar (SSR), that de-
tects the Mode 3/A (identification code) and the
Mode C (height) emitted by the intruder.

• Radar intelligence. Sensors belonging to this cat-
egory are all the radars. In our application we
have three types of radars: 3D radars, detecting
the 3D position of the intruder in the airspace;
2D radars, detecting the 2D position but not the
height of the intruder; and tracking radars, de-
tecting the 3D position of the intruder but only
at low heights and with a limited range.

• Imagery intelligence. Sensors belonging to this
category record TV or infrared (IR) images of
the intruder using cameras.

• Human intelligence. Sensors belonging to this
category are sensors where the information is
elaborated by humans before being transmitted
to the ADDC. In our application there are two
sensors of this type: ground-based observation
units, where humans observe the intruder using
optical instruments and communicate their ob-
servations to the ADDC, and interceptors, where
the pilot observes directly the intruder and com-
municate the observations to the ADDC.

The identification architecture is a complicated non-
homogeneous structure. In fact, not all the sensors are
present at the same time in each point of the no-fly
zone. The presence and the reliability of a sensor for
observing a given factor of the intruder depend on the
position of the intruder (in particular on its height),
on the position of the sensors in the architecture and
on the meteorological and geographical situation. In
Section 4.2 we explain in detail how presence and re-
liability are modeled by our network.

3 Mathematical Aspects

In this section, we briefly recall the definitions of
credal set and credal network [4], which are the math-
ematical objects we use to model expert knowledge
and fuse the different kinds information in a single
coherent framework.

3.1 Credal Sets

We use uppercase letters to denote random variables.
Given a random variable X , we denote by ΩX the
possibility space of X , with x a generic element of
ΩX . Denote by P (X) a mass function for X and by
P (x) the probability of x.

We denote by K(X) a closed convex set of proba-
bility mass functions over X . K(X) is said to be
a credal set over X . For any x ∈ ΩX , the lower
probability for x according to the credal set K(X) is
P (x) = minP (X)∈K(X) P (x). Similar definitions can
be provided for upper probabilities, conditional credal
sets, lower and upper expectations. Note that a set
of mass functions, its convex hull, and its set of ver-
tices (also called extreme mass functions) produce the
same lower and upper expectations and probabilities.

Conditioning with credal sets is done by elements-wise
application of Bayes rule. The posterior credal set is
the union of all posterior mass functions. Denote by
K(X |Y = y) the set of conditional mass functions
P (X |Y = y), for generic variables X and Y . We
say that two variables are strongly independent, when
every vertex in K(X, Y ) satisfies stochastic indepen-
dence of X and Y .

A set of probability intervals over ΩX , say IX = {Ix :
Ix = [lx, ux], , 0 ≤ lx ≤ ux ≤ 1, x ∈ ΩX}, can be
regarded as a specification of a credal set K(X) =
{P (X) : P (x) ∈ Ix, x ∈ ΩX ,

∑
x∈ΩX

P (x) = 1}. IX

is said to avoid sure loss if the corresponding credal
set is not empty and to be coherent (or reachable) if
ux′ +

∑
x∈ΩX ,x 6=x′ lx ≤ 1 ≤ lx′ +

∑
x∈ΩX ,x 6=x′ ux, for

all x ∈ ΩX . IX is coherent if and only if the intervals
are tight, i.e., for each lower or upper bound in IX

there is a mass function in the credal set at which the
bound is attained [12, 3].

3.2 Credal Networks

Let X be a vector of random variables and assume a
one-to-one correspondence between the elements of X

and the nodes of a directed acyclic graph G. Accord-
ingly, in the following we will use node and variable
interchangeably. For each X ∈ X, ΠX denotes the set
of the parents of X , i.e., the random variables corre-
sponding to the immediate predecessors of X accord-
ing to G.

The specification of a credal network over X, given the
graph G, consists in the assessment of a conditional
credal set K(Xi|πi) for each possible value πi ∈ ΩΠi

of the parents of Xi, for each variable Xi ∈ X.
The graph G is assumed to code strong dependen-
cies among the variables in X by the so-called strong
Markov condition: every variable is strongly indepen-
dent of its nondescendant non-parents given its par-
ents. Accordingly, it is therefore possible to regard a
credal network as a specification of a credal set K(X)
over the joint variable X, with K(X) convex hull of
the set of joint mass functions P (X) = P (X1, ..., Xn)
over the n variables of the net, that factorize ac-
cording to P (x1, . . . , xn) =

∏n

i=1 P (xi|πi). Here πi



is the assignment to the parents of Xi consistent
with (x1, . . . , xn); and the conditional mass functions
P (Xi|πi) are chosen in all the possible ways from the
respective credal sets. K(X) is called the strong ex-
tension of the credal network. Observe that the ver-
tices of K(X) are joint mass functions P (X). Each of
them can be identified with a Bayesian network [9],
which is a precise probabilistic graphical model. In
other words, a credal network is equivalent to a set of
Bayesian networks.

3.3 Computing with Credal Networks

Credal networks can be naturally regarded as expert
systems. We query a credal network to gather prob-
abilistic information about a variable given evidence
about some other variables. This task is called updat-
ing and consists in the computation, with respect to
the network strong extension K(X), of P (X |E = e)
and P (X |E = e), where E is the vector of variables of
the network in a known state e (the evidence), and X

is the node we query. Credal network updating is an
NP-hard task [5], for which a number of approximate
algorithms have been proposed [8, 2].

4 Qualitative Assessment of the

Network

We are now in the position to describe the credal net-
work developed for our application. According to the
discussion in the previous section, this task first re-
quires the qualitative identification of the conditional
dependencies between the different variables involved
in the model, which can be coded by a corresponding
directed acyclic graph.

As detailed in Section 2, the variables we consider in
our approach are: (i) the risk factor, (ii) the nine vari-
ables used to assess the intention of the intruder, (iii)
the variables representing the observations returned
by the sensors, (iv) for each sensor two additional
variables representing presence and reliability of the
sensor. In the following, we refer to the variables in
the categories (i) and (ii) as core variables.

4.1 Risk Evaluation

Figure 1 depicts the conditional dependencies between
the core variables according to the military and tech-
nical considerations of the Expert.1 As an example,
the arcs connecting the nodes type of aircraft, height,
and risk factor with the speed, correspond to the fol-
lowing Expert’s remarks: there is a strong relation be-

1In this paper we briefly call Expert a pool of military ex-
perts from the Swiss Air Force, we have consulted during the
development of the model.

tween the height above the ground and the correspond-
ing speed of an aircraft (technical considerations); a
renegade is expected to fly as fast as possible (mil-
itary consideration); an intruder flying with a light
aircraft, because of the limited maximal speed of this
type of aircrafts, would necessarily flight very slowly.
The specification of this part of the network has re-
quired a considerable amount of military and techni-
cal expertise that, due to space limitations, cannot be
explained in more detail here.

Aircraft
Type

Height
Changes

Transponder
Mode 3/A

Aircraft
Height

Risk
Factor

Reaction
to ATC

Absolute
Speed

Reaction
to ADDC

Interception
Reaction

Flight
Path

Figure 1: The core of the network. Dark gray nodes
are observed by single sensors, while light gray nodes
are observed by set of sensors for which an information
fusion scheme (see Section 4.2) is required.

4.2 Observation and Fusion Mechanism

We distinguish between latent variables, that are as-
sumed to be unobservable, and manifest variables,
which are actually observed. The core variables in
Figure 1 are regarded as latent variables that, to be
determined, usually require the fusion of information
coming from different sensors, with different levels of
reliability. Nevertheless, in the case of the identifica-
tion code emitted by the intruder (Transponder Mode
3/A), the reaction to interception observed by the pi-
lot, and the reaction to civil air traffic control (ATC)
observed by the controllers through SSR, the observa-
tion mechanism is immediate; thus we simply identify
the latent with the corresponding manifest variable,
adding the value missing, as possible value of the vari-
able. This value can have particular meanings (eg.,
a missing Mode 3/A probably means a switched off
transponder) and will be also added to the possibility
space of the other manifest variables.

Clearly, if the risk factor was the only latent variable,
the network in Figure 1 would be the complete net-
work needed to model the risk evaluation. But, be-
cause we are dealing with latent variables observed by
many sensors, a model of the observation and a fusion



mechanism has to be added to the current structure.

Observation Mechanism We begin by consider-
ing observations by single sensors, and then we ex-
plain the fusion scheme for several sensors. Consider
the following example: suppose that an intruder is fly-
ing at low height and is observed by ground-based ob-
servation units in order to evaluate its flight path. For
this evaluation, the intruder should be observed by
many units. If our identification architecture is char-
acterized by too a low number of observation units,
it is probable that the observation of the flight path
would be incomplete or even absent, although the me-
teorological and geographical conditions are optimal.
In this case, the low quality of the observation is due
to the scarce presence of the sensor. Suppose now that
the architecture is characterized by a very large num-
ber of observation units but the weather is character-
ized by a complete cloud cover with low clouds, then
the quality of the observation is very low although the
presence of units is optimal. In this case the low qual-
ity of the observation is due to the low reliability of
the sensor under this meteorological condition. This
example motivates our choice to distinguish between
reliability and presence of the sensors in the network.

Figure 2 illustrates, in general, how the evidence pro-
vided by a sensor about a latent variable is assessed.
The manifest variable depends on the relative latent
variable, on the presence of the sensor and on its re-
liability. Both reliability and presence are categorical
variables with three possible values, high, medium

and low for the reliability, and present, partially

present and absent for the presence.

The reliability of a sensor depends on the meteoro-
logical and geographical situation and on the height,
while the presence of a sensor depends only on the
identification architecture and on the height of the in-
truder. The dependence on the latent variable height
can be explained considering the technical limits of
the sensors. There are sensors that are specific of the
low and very low heights, like tracking radars and TV
or IR cameras. There are other sensors, like the 3D
radars of the fixed military radar stations, that are
always present at high and very high heights, but are
not always present at low and very low heights.

The meteorological and geographical conditions do not
affect the presence of a sensor, but only its reliability.
It is important to point out that these conditions are
always observed and we will not display them explic-
itly as variables in the network, being already con-
sidered by the Expert during his quantification of the
reliability.

Exogenous
factors

Aircraft
Height

Sensor
reliability

Latent
variable

Sensor
presence

Manifest
variable

Figure 2: Observation mechanism for a single sensor.
The latent variable is the variable to be observed by
the sensor, while the manifest variable is the value
returned by the sensor itself.

Sensors Fusion We can finally explain how the in-
formation collected by the different observations of
a single latent variable returned by different sensors
can be fused together. Consider, for example, the
determination of the latent variable type of aircraft
depicted in Figure 3. The type of aircraft can be ob-
served by four types of sensors: TV cameras, IR cam-
eras, ground-based observation units and air-based in-
terceptors. For each possible sensor, we model the
observation using a structure like the network in Fig-
ure 2: there is a node representing the presence of the
sensor and a node representing the reliability of the
sensor, while the variable height influences all these
nodes. This structure permits the fusion of the evi-
dence about the latent variables coming from the dif-
ferent sensors, taking into account the reliability of
the different observations in a very natural way and
without the need of any external specification of ex-
plicit fusion procedures. Similar approaches have al-
ready been used for Bayesian networks [6].

Aircraft
Height

Reliability
of Sensor 1

Reliability
of Sensor 2

Reliability
of Sensor 3

Reliability
of Sensor 4

Presence of
Sensor 1

Presence of
Sensor 2

Presence of
Sensor 3

Presence of
Sensor 4

Type of
Aircraft

Sensor 1
(TV)

Sensor 2
(IR)

Sensor 3
(ground)

Sensor 4
(air)

Figure 3: The determination of the latent variable
type of aircraft by four sensors.

We similarly proceed for all the latent variables re-
quiring the fusion of information from many sensors.
This practically means that we add a subnetwork sim-
ilar to the one reported in Figure 3 to each light gray



Risk Factor

Flight Path

Interception Reaction

Aircraft Height ADDC Absolute Speed Height Changes Aircraft Type

Transponder

ATC

Figure 4: The complete structure of the credal network. Black nodes denote manifest variables, while latent
variables correspond to white nodes. Boxes are used to highlight the different subnetworks modeling the
observations of the latent variable as in Figure 3.

node of the core network in Figure 1. The resulting
directed graph, which is still acyclic, is shown in Fig-
ure 4.

5 Quantitative Assessment of the

Network

As outlined in Section 3, the specification of a credal
network over the variables associated to the directed
acyclic graph in Figure 4 requires the specification
of a conditional credal set for each variable and each
possible configuration of its parents.

For the core variables, these credal sets have been
obtained by means of probability intervals explicitly
provided by the Expert (Section 5.1), while, regard-
ing observations, presence and reliability, a quantifi-
cation procedure to automatically transform Expert’s
qualitative judgments in conditional credal sets spec-
ifications has been developed (Section 5.2).

5.1 Quantification of the Network Core

Because of the scarcity of historical cases, the quan-
tification of the conditional credal sets for the core
variables in Figure 1 is mainly based upon military
and technical considerations. Together with the Ex-
pert we have isolated a number of principles, later
translated into probability intervals and hence into
conditional credal sets. We point the reader to [10]
for a detailed description of this quantification task.
Here, we cite as an example only some of the prin-
ciples used to quantify this part of the network: a
renegade is not expected to use balloons or gliders; the
light aircraft is the type of aircraft more probable to
be used by a terrorist; erroneous intruders are usually
light aircrafts and we do not expect a business jet or
an airliner to be an erroneous intruder; balloons and
gliders are subject to defects due to the meteorological

conditions.

In some situations, the Expert was also able to iden-
tify logical constraint among the variables. As an ex-
ample, the fact that balloons cannot maintain high
levels of height represents a constraint between the
possible values of the variables type of aircraft and
height. These kinds of constraints have been embed-
ded in the structure of the network by means of zero
probability assessments.

5.2 Observations, Presence and Reliability

To complete the quantification of our credal network,
we should discuss, for each sensor, the quantification
of the variables associated to the observation, the re-
liability and the presence.

We begin by explaining how presence and reliability
are specified. Consider the network in Figure 2. The
Expert should quantify, for each of the four possible
values of the variable height, a credal set for the reli-
ability and a credal set for the presence of the sensor.
In practice, the Expert is simply required to suggest
a value for the presence and a value for the reliability.
To assess the value of the presence, he should take
into consideration only the structure of the identifi-
cation architecture; while to assess the value for the
reliability level, also the actual meteorological and ge-
ographical situation should be considered.

For each specified level of presence or reliability, the
Expert should also decide whether or not he is uncer-
tain about this value. His judgments are then trans-
lated into coherent probability intervals, from which
we can compute the corresponding credal sets reflect-
ing his beliefs. To this purpose, we have defined,
together with the Expert, a set of fixed credal sets
that are used to model the different combinations of
values and uncertainty values. This procedure sub-



stantially simplifies the quantification of the network,
while maintaining a large flexibility in the specifica-
tion of presence and reliability.

Regarding the observations, a conditional credal set
for each possible value of the corresponding latent
variable and for each possible level of reliability and
presence has been assessed. The Expert has answered
questions like, what is the probability (interval) that
the ground-based observers have medium reliability in
observing the type of aircraft of an intruder that is
flying at low height, if the meteorological condition is
characterized by dense low clouds and we are in the
plateau?

Clearly, it can be extremely difficult to answer dozens
of questions of this kind in a coherent and realistic
way. It is much easier to answer questions like the
following, what is the reliability level that you expect
from ground-based observers observing the type of air-
craft of an intruder that is flying at low height, if the
meteorological condition is characterized by dense low
clouds and we are in the plateau? The latter ques-
tion is much simpler than the former, because one is
required to specify something more qualitative than
probabilities. This is exactly the type of question that
we asked the Expert to quantify the necessary prob-
abilities in our network. In the following we explain,
in order, our quantification of presence and reliability
of sensors, and the observation mechanism.

Let X be a latent variable, and O the manifest vari-
able corresponding to the observation of X as re-
turned by a given sensor. For each combination of
reliability and presence, we should assess, for each
x ∈ ΩX and o ∈ ΩO, the bounds P (X = x|O = o)
and P (X = x|O = o).

This quantification step can be simplified by defin-
ing a symmetric non-transitive relation of similarity
among the elements of ΩX . The similarities between
the possible values of a latent variable according to
a specific sensor can be naturally represented by an
undirected graph as in the example of Figure 5. In
general, given a latent variable X , for each possible
outcome x ∈ ΩX , there are outcomes of X that are
similar to x and outcomes that are not similar to x.

Having defined, for each latent variable and each cor-
responding sensor, the similarities between its possi-
ble outcomes, we can then divide the possible obser-
vations in four categories: (i) observing the correct
value of X ; (ii) confounding the real value of X with
a similar one; (iii) confounding the true value of X

with a value that is not similar; (iv) the observation
is missing. The idea is to quantify, instead of a prob-
ability interval for P (X = x|O = o) for each x ∈ ΩX

and each o ∈ ΩO, only four probability intervals, cor-

Light
aircraft

Glider Balloon

Helicopter
Business

jet Airliner

Figure 5: An undirected graph depicting similarity re-
lations about the possible values of the variable types
of aircraft according to the observation of a TV cam-
era. Edges connect similar states. The sensor can mix
up a light aircraft with a glider or a business jet, but
not with a balloon or a helicopter.

responding to the four categories of observations de-
scribed above.

Let us finally explain how the four probability inter-
vals are quantified in our network for each combina-
tion of reliability and presence and for each sensor.
The probability interval assigned to the case where
the observation is missing depends uniquely on the
presence. In particular, if the sensor is absent, then
the probability of having a missing observation is set
equal to one and therefore the probability assigned
to all the other cases are equal to zero. It follows
that we have only seven combinations of reliability
and presence to quantify. To this extent, we use con-
straints based on the concept of interval dominance
to characterize the different combinations.2 In order
of accuracy of the observation, the combinations are
the following:

1. high, present: the correct observation dom-
inates (clearly) the similar observations. The
probability for not similar observations is zero
and is therefore dominated by all the other cate-
gories.

2. high,partially present: the correct observa-
tion dominates the similar observations and dom-
inates (clearly) the not similar observations. The
similar observations dominates the not similar
observations.

3. medium,present: the correct observation domi-
nates the similar observations and dominates the
not similar observations. The similar observa-
tions dominates the not similar observations.

4. medium, partially present: the correct obser-
vation does not dominate the similar observations
but dominates the not similar observations.

2Given a credal set K(X) over a random variable X, and two
possible values x, x′

∈ ΩX , we say that the x dominates x′ if
P (X = x′) < P (X = x) for each P ∈ K(X). It is easy to show
that that interval dominance, i.e., P (X = x′) < P (X = x), is
a sufficient condition for dominance.



5. low,present: no dominance at all.

6. low,partially present: no dominance at all.

7. absent: the probability of a missing observation
is equal to one, this value dominates all the other
values.

6 Information Fusion by Imprecise

Probabilities

The procedure described in Sections 4.2 and 5.2 to
fuse the observations gathered by the sensors, can be
regarded as a possible imprecise-probability approach
to the general information fusion problem. In this
section, we take a short detour from the military as-
pects to illustrate some key features of such an ap-
proach by a simple example.

Let us first formulate the general problem. Given a la-
tent variable X , and the manifest variables O1, . . . , On

corresponding to the observations of X returned by n

sensors, we want to update our beliefs about X , given
the values o1, . . . , on returned by the sensors.

The most common approach to this problem is to as-
sess a (precise) probabilistic model over these vari-
ables and compute the conditional mass function
P (X |o1, . . . , on). That may be suited to model situ-
ations of consensus among the different sensors. The
precise models tend to assign higher probabilities to
the values of X returned by the majority of the sen-
sors, which may be a suitable mathematical descrip-
tion of these scenarios.

The problem is more complex in case of disagreement
among the different sensors. In these situations, pre-
cise models assign similar posterior probabilities to
the different values of X . But a flat posterior prob-
ability mass function models indifference, while sen-
sors disagreement seems to reflect instead a condition
of ignorance about X .

Imprecise-probability models are more suited for these
situations. Posterior ignorance about X can be repre-
sented by the impossibility of a precise specification of
the conditional mass function P (X |o1, . . . , on). The
more disagreement we observe among the sensors, the
wider we expect the posterior intervals to be, for the
different values of X .

The case where the size of the posterior probability
intervals results to be increased by conditioning is
known in literature as dilation [11], and is relatively
common with coherent imprecise probabilities.

The following simple example, despite its simplicity,
is sufficient to outline how these particular features
are obtained by our approach.

Example 1 Consider a credal network over a la-
tent variable X, and two manifest variables O1 and
O2 denoting the observations of X returned by two
identical sensors. Assume to be given the strong in-
dependencies coded by the graph in Figure 6. Let all
the variables be Boolean. Assume P (X) to be uniform
and both P (Oi = T|X = T) and P (Oi = F|X = F)
to take values in the interval [1− ǫ, 1], for each i=1,2,
where ǫ > 1

2 models a (small) error in the observa-
tion mechanism. Since the network in Figure 6 can
be regarded as a naive credal classifier [13], where the
latent variable X plays the role of the class node and
the observations correspond to the class attributes, we
can exploit the algorithm presented in [13, Section 3.1]
to compute the following posterior interval:

P (X = T|O1 = T, O2 = T) ∈ [
(1 − ǫ)2

1 − 2ǫ(1 − ǫ)
, 1].

It follows that, in case of consensus between the two
sensors, the corresponding probability for the latent
variable increases, given that the lower extreme is
larger than 1

2 . In the case of disagreement, instead, we
obtain that P (X = T|O1 = F, O2 = T) ∈ [0, 1], which
means that our ignorance about X dilates, leading to
a completely uninformative posterior interval.

X

O1 O2

Figure 6: The credal network for Example 1.

Remarkably, assuming fixed levels of height, reliabil-
ity and presence, Figure 3 reproduces the same struc-
ture of the prototypical example in Figure 6, with
four sensors instead of two. The same holds for any
sub-network modeling the relations between a latent
variables and the relative manifest variables in our
network.

7 Algorithmic Issues and Simulations

The discussion in Section 4 and Section 5 led us to
the specification of a credal network, associated to
the graph in Figure 4, over the whole set of random
variables we consider, i.e., core variables, observations
collected by the different sensors, reliability and pres-
ence levels.

At this point, we can evaluate the risk associated to an
intrusion, by simply updating the probabilities for the
four possible values of the risk factor, conditional on
the values of the observations returned by the sensors



and on the levels of reliability and presence observed
by the Expert.

As a preliminary test of the model, we have consid-
ered a simulated scenario of a single object in the
Swiss Alps, like for example a dam, surveyed by an
identification architecture that is characterized by the
absence of interceptors and by a relatively good cov-
erage of all the other sensors. We assumed as me-
teorological conditions discontinuous low clouds and
daylight. The simulated scenario reproduces a situ-
ation where an agent provocateur is flying very low
with a helicopter and without emitting any identifi-
cation code. The decision maker is assumed to have
uniform prior beliefs about the four classes of risk.

The size of the network suggests the opportunity of
an approximate approach to this updating problem.
In our approach, we have first reformulated our model
as a locally specified credal network, according to the
procedure developed in [1]. Then, we have trans-
formed each non-binary variable of the credal network
into a set of binary variables, according to the bi-
narization algorithm, reported in [2]. The resulting
credal net has been finally updated by the loopy ver-
sion of the 2U algorithm (L2U) [7]. The overall pro-
cedure, which can be proved to be approximate only
because of the L2U algorithm, can be implemented in
polynomial time. In our case, the credal network has
been updated in few seconds on a 2.8GHz Pentium 4
machine, and convergence of L2U has been observed
after seven iterations.

Figure 7.a depicts the posterior probability intervals
for this simulated scenario. The upper probability
for the outcome renegade is zero, and we can there-
fore exclude a terrorist attack. Similarly, the lower
probability for the outcomes agent provocateur and
damaged intruder are strictly greater than the upper
probability for the state erroneous, and we can reject
also this latter value because of interval dominance.
Both these results are reasonable estimates for this
simulated scenario.

Remarkably, the indecision between agent provocateur
and damaged intruder disappears as we assume higher
levels of reliability and presence for the sensors de-
voted to the observation of the height. The results,
reported in Figure 7.b, state that the intruder is an
agent provocateur, as we have assumed in the design
of this simulation.

8 Conclusions and Future Work

A model for determining the risk of intrusion of a
civil aircraft into no-fly zone has been presented.
The model embeds in a single coherent mathematical
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Figure 7: Posterior probability intervals for the risk
factor, corresponding to a simulated scenario repro-
ducing a helicopter entering the no-fly zone because
of technical difficulties. The histogram bounds denote
lower and upper probabilities. The sensors observing
the aircraft height are assumed more reliable in (b)
than in (a).

framework human expertise expressed by imprecise-
probability assessments, and a structure reproducing
complex observation mechanisms and corresponding
information fusion schemes.

The risk evaluation corresponds to the updating of
the probabilities for the risk factor conditional on the
observations of the sensors and the estimated levels
of presence and reliability. Preliminary tests consid-
ered for a simulated scenario are consistent with the
judgments of an expert domain for the same situation.

As future work we intend to test the model for other
historical cases and simulated scenarios. The approx-
imate updating procedure considered in the present
work, as well as other algorithmic approaches will be
considered, in order to determine the most suited for
this specific problem.

In any case, it seems already possible to offer a prac-
tical support to the military experts in their evalua-
tions. They can use the network to decide the risk
level corresponding to a real scenario, but it is also
possible to simulate situations and verify the effec-
tiveness of the different sensors in order to design an
optimal identification architecture.

Finally, we regard our approach to the fusion of the in-
formation collected by the different sensors as a sound
and flexible approach to this kind of problems, able
to work also in situations of contrasting observations
between the sensors.
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