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Abstract

Influenza pandemics have swept the world numerous
times during the last few centuries. Cases of bird
flu infecting humans have prompted predictions that
we are due for another pandemic soon, but skeptics
dismiss such prognostications as panic caused by a
misunderstanding of probability. The issue can be re-
duced mathematically to the question of whether the
pandemic process has an increasing, constant, or de-
creasing hazard function. Historical data on past pan-
demics can be used to estimate the hazard function
using imprecise probabilities, giving upper and lower
predictive probabilities of an imminent pandemic,
given past waiting times. In order to achieve smoother
estimates of the imprecise hazard function, an auto-
correlated imprecise Normal prior is proposed.

Keywords. Survival analysis, hazard function, au-
tocorrelated prior.

1 Introduction

Observations of human cases of H5N1 avian influenza
in recent years have sparked much discussion in both
scientific literature and popular media about the
prospects of another flu pandemic. Such pandemics
have occurred several times in recent history and con-
cern has been expressed about the prospects of an-
other one. The most devastating occurrence was the
Spanish flu of 1918, but lesser pandemics have occured
since then, the most recent being an H1N1 strain in
1977 [7]. Experts disagree on the probability of an
imminent pandemic, and in an attempt to elicit prob-
abilities, the University of Iowa has even created an
online market in avian influenza futures! [1].

One question that arises is whether the probability
of an imminent pandemic increases the longer it has
been since the last one. On the one hand, it has been
argued that pandemics have historically occurred at
20 to 30 year intervals, and given that it has been

30 years since the last one, we are “due” for one.
Countering that is the argument [3] that a long wait-
ing time actually makes an imminent pandemic less

likely since it indicates that the evolutionary course
of prospective pathogens has wandered away from
genotypes adapted to human transmission. Dismiss-
ing both these arguments are individuals with a little
learning in probability who proclaim that the proba-
bility of a pandemic is unaffected by a long waiting
time, since a pandemic is a random event.

A more sophisticated probabilistic view, of course,
will acknowledge that any of the three scenarios are
logically possible. Suppose that t represents the year
of the last pandemic, and let T + t be the year of the
next one. If t+s is the current year, then the relevant
quantity is the discrete hazard rate

h(t) = Pr{T + t = t + s + 1|T + t > t + s}

=
Pr{T = s + 1}

Pr{T > s}
, (1)

the conditional probability that it will occur in the
next year given that it has not happened yet. Equiv-
alently, one can work with the instantaneous hazard

rate defined as

λ(s) = lim
δ↓0

Pr{T ≤ s + δ}

δ Pr{T > s}
, (2)

the two concepts being related by

S(t) = Pr{T > s} = exp

(

−

∫ s

0

λ(u) du

)

= e−Λ(s)

(3)
and

h(s) = 1 − exp

[

Λ(s) − Λ(s + 1)

]

≈ λ(s). (4)

S is called the survivor function, and Λ is the inte-
grated hazard.

The contrary opinions expressed in the previous para-
graph can now be described as believing that the haz-



ard rate is respectively increasing, decreasing, or con-
stant. It is possible to construct probabilistic mod-
els that are consistent with any of these viewpoints.
While the dynamics of viral evolution is too complex
to describe by a simple model, even simplistic models
exhibit increasing or decreasing or constant hazards.
If the occurrence of a pandemic happens as a result of
a number of steps with a strong selective drift, then
the hazard will be increasing, since while we are wait-
ing, the virus is getting closer to a pandemic state.
On the other hand, if viral evolution is envisaged as a
random walk in a space of genotypes then a decreas-
ing hazard would be typical of hitting times in such
processes. But if pandemics truly are like a Poisson
process, then a constant hazard would be expected.

The purpose of this paper is not to delve into realistic
models of viral evolution, nor to propose definitive
predictions of an influenza pandemic. Rather, we will
examine to what extent one can determine the nature
of the hazard function for the pandemic process, based
solely on the historical record of past occurrences, and
show how principles of imprecise probability cast light
on the uncertainty present in such estimates. We will
also contrast these methods with classical statistical
approaches.

2 Mathematical models and data

According to Patterson [7], influenza pandemics oc-
curred in the following years: 1729, 1732, 1781,
1788, 1830, 1833, 1836, 1889, 1899, 1918, 1957, 1968,
and 1977. Some pandemics may have lasted more
than a year. We use the first year reported as indi-
cating the beginning of the pandemic.

We consider the pandemics to be a renewal process, in
which the time between occurrences are i.i.d. random
variables. Thus we are assuming that after each pan-
demic the virulent strain dies out because of immunity
and deaths of hosts, and the evolutionary process to
a new strain of pandemic virulence begins anew. We
are also assuming no secular trend in the intensity of
the process. These assumptions are admittedly sim-
plistic, and may be challenged. Variation of these
assumptions would increase the imprecision in the es-
timates.

Patterson’s record gives inter-pandemic periods
of 3, 49, 7, 42, 3, 3, 53, 10, 19, 39, 11, and 9 years.
To this data we can add the 30 pandemic-free years to
the present, which becomes a censored observation.

3 Frequentist analysis

A classical approach to fitting the data is to use the
Kaplan-Meier estimator [6]. This allows one to esti-
mate the survivor function S allowing for censoring,
but does not directly address the question of increas-
ing or decreasing hazard. We can, however, fit a para-
metric model

log λ(t) = θ1 + θ2 log t, (5)

which assumes that the interpandemic times have a
Weibull distribution. Increasing, constant, and de-
creasing hazards correspond to positive, zero, and
negative values, respectively, of the parameter θ2.

Estimating the parameters by maximum likelihood
gives the estimates θ̂1 = −3.329, θ̂2 = 0.075, suggest-
ing a slightly increasing hazard. However, a likelihood
ratio test finds that θ̂2 does not differ significantly
from zero, which some people (mistakenly) might in-
terpret as evidence that the hazard is constant. In-
deed the 95% confidence set on the parameters estab-
lishes only that −0.44 < θ2 < 0.80, indicating that
the data are consistent (under this model) with de-
creasing, increasing, or a constant hazard. Figure 1
shows the estimated survivor functions for both the
Kaplan-Meier and maximum likelihood estimates.

The hazard is more relevant than the survivor func-
tion for the predictive probability of an imminent pan-
demic after a waiting period. As shown in Figure 2,
the estimated hazard is nearly constant at about 5%.
However, the estimate has considerable uncertainty,
which in classical terms is indicated by a confidence
set.

Figure 2 also shows a set of hazard functions corre-
sponding to the boundary of the 95% confidence set
on the parameters. This envelope well displays the
uncertainty, showing both increasing and decreasing
hazards that are consistent with the data.

4 Imprecise probability models

While a confidence band on a predictive curve indi-
cates the imprecision, it is not possible to interpret
these bounds as predictive probabilities. It is difficult
to explain the meaning of the upper envelope in Fig-
ure 2 in a way that is both understandable and math-
ematically correct. Imprecise probability bounds, on
the other hand, can honestly be described as upper
and lower predictive probabilities.
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Figure 1: Kaplan-Meier and maximum likelihood esti-
mates of survivor function for pandemic-free periods.
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Figure 2: Maximum likelihood estimate of hazard
function along with 95% confidence envelope.

4.1 Imprecise Dirichlet and product Beta

models

Nonparametric estimates of survivor functions using
Walley’s [8] imprecise Dirichlet model were discussed
by Coolen [4]. However, this model does not give
useful descriptions of the hazard function, since up-
per and lower bounds on the survivor function do not
translate into upper and lower bounds on the haz-
ard. One can, however, estimate the hazard function
directly.

Suppose that we have k time intervals (which we as-
sume to be equally spaced). Suppose that θi rep-
resents the conditional probability of a failure (i.e.,
pandemic) by the end of the ith interval, given that
there have been no failures in the preceding i − 1 in-
tervals. If we have data on mi−1 cases in which no
failures have occurred, and ni of them do fail, then
this random variable will have a binomial distribution
with success probability θi. Moreover, since failures
in different intervals will be conditionally independent
(given survival), the likelihood of a sample will be pro-
portional to

k
∏

i=1

(1 − θi)
miθni

i . (6)

Conjugate to this likelihood would be a product Beta
distribution. We can then use, for each interval,
an imprecise Beta prior with hyperparameters αiν
and (1−αi)ν (using the notation of Bernard [2]) where
αi covers the interval (0, 1) to give the range of impre-
cise probabilities. We use the same ν for all intervals,
although an argument could be made for varying it.
The upper and lower predictive hazards, (i.e., the up-
per and lower posterior expectations of θi) then be-
come (ni + ν)/(ni + mi + ν) and ni/(ni + mi + ν),
respectively. The upper and lower survivor functions
can then be computed as

Ŝi =

i
∏

j=1

(

1 −
nj + ν

nj + mj + ν

)

(7)

and Ŝi =
i

∏

j=1

(

1 −
nj

nj + mj + ν

)

. (8)

In the absence of censoring, mi = ni + mi+1, and as

ν → 0, Ŝi becomes the Kaplan-Meier estimator.

Figure 3 shows the upper and lower probabilities of
the survival function for both the imprecise Dirichlet
model and the product Beta model, as well as the
Kaplan-Meier estimator for comparison. Following
the suggestion of Walley, we used a value of ν = 1
as the imprecision parameter. It turns out that the
upper probabilities of the Dirichlet and product Beta
models are identical, whereas the Beta model gives a
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Figure 3: Upper and lower imprecise survivor func-
tion, showing both imprecise Dirichlet estimates, and
product Betas estimates

substantially smaller lower probability. The Kaplan-
Meier estimator lies between the upper and lower
probabilities, as was pointed out by Coolen [4].

Figure 4 shows the upper and lower probabilities for
the hazard function. Note that when an interval has
no occurrences, the lower probability is necessarily
zero, while the upper probability can be quite high
if the remaining sample numbers are low. The rather
jagged shape of the curve can be explained by the fact
that if the parameters are independent a priori then
the form of the likelihood (6) makes them indepen-
dent a posteriori as well.

4.2 Correlated imprecise Normal model

It would be preferable to make use of the prior in-
formation that the hazard function would be contin-
uous and fairly smooth. We would not expect dras-
tic changes in the probability of recurrence in a year.
Thus, in place of the product Beta model, we are
proposing that the prior distribution of the θ’s be an
autoregressive process. To make this tractable, we use
a Gaussian prior on the log-odds.

Specifically, we assume that the ωi = log
(

θi/(1− θi)
)

has a priori a Normal distribution with mean µ and
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Figure 4: Upper and lower imprecise hazard function.

variance σ2. Moreover, we assume that the sequence
of ωi’s follow a stationary AR(1) process with auto-
correlation ρ.

Using a Beta prior, the distribution of ωi would be
Fisher’s-Z [5], which has lighter tails than the Nor-
mal. Thus the Normal prior tends to give somewhat
less weight to extreme probabilities (which could be
viewed as an advantage). Another difficulty is that
the posterior distribution is harder to evaluate. Given
binomial data of y successes out of n trials, the pos-
terior distribution of ω has density

K(µ, σ, n, y)
exp

[

−
(

ω − (µ + σ2y)
)

/(2σ2)
]

(1 + eω)n
(9)

where K is a constant of integration. The posterior
mean, (i.e., the predictive probability) appears not to
be tractable, but can be computed numerically as

K

∫ 1

0

exp



−

(

log
(

θ
1−θ

)

− (µ + σ2y)
)2

2σ2





(1 − θ)n−1

θ
dθ.

(10)

The imprecise Dirichlet model has the property that
the prior probabilities are vacuous, but the posterior
ones may have some precision. To achieve the same
goal with the Normal model requires care. We use the
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Figure 5: Sampled hazard functions from autocorre-
lated imprecise posterior

family of Normal distributions where

σ = σ0 + τ |µ|γ (11)

where σ0, τ and γ are viewed as tuning parameters.
We use σ0 = 8/3 as a value that (with µ = 0) approxi-
mates the Beta(1/2, 1/2) density for θ. Thus this sym-
metric prior distribution represents about the same
level of uncertainty as a symmetric Beta distribution
with ν = 1. Putting τ = γ = 0.5 and letting µ vary
from −∞ to ∞ appears to achieve our goal of pro-
viding upper and lower probabilities (although more
work could be done here).

Extending the integral (9) to the multivariate case
seemed intractable, so we estimated the smoothed
hazard function using importance sampling. Let-
ting µ vary from −8 to 2, 1000 samples were taken
from a Gaussian AR(1) process with mean µ, ρ = 0.99
and variance given by (11). For each sample, the like-
lihood of the observed data was computed. These
likelihoods were then used as weights in computing
the predictive probabilities of both the hazard and
survival functions. The results are shown in Figures 5
and 6. The bundle of curves displays the imprecision
in the predictive probabilities.
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Figure 6: Sampled survival functions from autocorre-
lated imprecise posterior.

5 Conclusion

From these displays we can see that although a con-
stant hazard can (barely) fit inside this band, there is
a rather strong suggestion of an increasing hazard af-
ter about 25 years. While this exercise cannot pretend
to be the last word on predicting pandemics, it does
show how ideas of imprecise probability can focus on
realistic understanding of future risks. We hope that
imprecise probability methods will be useful in other
situations of estimating risks after waiting time. As
extension of this work, we intend to examine how the
hyperparameters of the stationary Gaussian process
affect the performance of the estimates.
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