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Abstract

Developing models to describe real systems is a chal-
lenge because it is difficult to assess and control the
residual between the two entities. Bayesian updating
of a belief about model accuracy across an ensemble of
available models can lead to spurious results, since the
application of Bayes’ rule presupposes that an accu-
rate model is contained in the ensemble with certainty.
We present a framework in which this assumption can
be dropped. The basic idea is to extend Bayes’ rule to
the exhaustive, but unknown space of all models, and
then contract it again to the known set of models by
making best/worst case assumptions for the remain-
ing space. We show that this approach leads to an
ε-contamination model for the posterior belief, where
the ε-contamination is updated along with the distri-
bution of belief across available models. In essence,
the ε-contamination provides an additional test on the
accuracy of the overall model ensemble compared to
the data, and will grow rapidly if the ensemble fails
such a test. We demonstrate our concept with an
example of autoregressive processes.

Keywords. Bayesian updating, prediction, model
accuracy, ε-contamination model, AR process

1 Introduction

A vital part of the scientific endeavor consists in de-
veloping models for real systems. Obviously, a model
can never be an identical copy of a real system, but
rather a proxy to understand a limited set of system
features, on the basis of which future observations of
these features may be predicted. In order to construct
a useful model, it is important to control the residual
between model and real system in a way that allows
the model to have some predictive accuracy. There-
fore, it is extremely helpful if the real system can be
studied in laboratory experiments where the exper-
imenter can force her ways on it to test the model.
However, controlling the residual becomes an enor-

mous challenge if the real system is not accessible to
laboratory studies. The situation is further exacer-
bated if available observations cover only a small part
of the phase space. The climate system and computer
models of it are a perfect example of this situation,
and we will have this example in mind in what follows.

In such cases, model quality is usually assessed with
a mixture of scientific knowledge about the system
and statistical inference from system measurements.
Here, we focus on model accuracy to predict certain
system features. While several definitions of accuracy
can be found in the literature (e.g. in terms of bias),
we use our own definition tailored to an application
to dynamic systems characterized by noisy time se-
ries. We say that a model S is accurate (to make
predictions) if it can describe the observables Y of a
(few) system feature(s) of interest – not of the en-
tire system – up to an additive Gaussian iid process
ǫ, i.e., Y − S = ǫ ∼ N(0, σ). The choice of a Gaus-
sian iid process for the residual between model and
data is a common, but subjective assumption, and
should be regarded as part of the model formulation.
In principle, our approach could be applied with an-
other choice of stationary stochastic process for the
residual.

Assume we have an ensemble of model hypotheses
M(θ), with θ ∈ Θ indexing the available models, and
some system data ŷ, from which we want to learn
about the relationship between M(θ) and an accurate
model S. If a probability P (M(θ) = S|ŷ) is sought,
we have to turn to Bayesian statistics. In our case,
this requires to

1. estimate a likelihood function L(θ; ŷ) ∼ ρ(ŷ|θ),
i.e., the probability of observing ŷ for a given
model M(θ) under the assumption that M(θ)
constitutes an accurate model (which defines the
likelihood function given our knowledge about
the residual Y − S = ǫ), and

2. updating it with a prior probability density ρ(θ) :



Ω → R
+
0

1 to derive the posterior probability den-
sity ρ(θ|ŷ) that model M(θ) constitutes an accu-
rate model S.

However, this approach requires us to make the as-
sumption that S is contained in our model ensemble
with certainty as evident from Bayes’ rule

ρ(θ|ŷ) =
L(θ; ŷ)ρ(θ)

ρ(ŷ)
(1)

with ρ(ŷ) :=

∫

θ

L(θ; ŷ)ρ(ŷ)dθ ,

where the denominator assures that the posterior
probability is normalized. In the following, we may
call the fact that

∫

θ
ρ(θ)dθ =

∫

θ
ρ(θ|ŷ)dθ = 1 closed

world assumption.

We believe that this assumption is at odds with the
open nature of the scientific endeavor, where a set of
possible models {M(θ)|θ ∈ Θ} imagined at some ini-
tial time is usually expanded as more data is obtained.
More precisely, the model development process con-
sists in (I) expanding the set Θ of known models, and
(II) updating our belief about model accuracy across
Θ. Obviously, only the later type (II) learning can be
described in terms of Bayesian learning. The former
type (I) may be informed by Bayesian inference, but
seems to be complementary to it, since it relates to the
emergence of positive belief in an area of the model
space that was not supported by the prior belief.

Acknowledging this fundamental difference, we will
not attempt to force type (I) learning in terms of ex-
panding Θ into the Bayesian updating framework. In-
stead, we aim at the more modest goal to include
an indicator for the necessity of type (I) learning
into the updating process. This is important because
naive application of Bayesian learning without con-
templating the possibility that the entire model en-
semble {M(θ)|θ ∈ Θ} might not contain an accurate
model can lead to spurious results. As the amount
of data ŷ increases, the likelihood function tends to
sharpen, and updating by means of Equation (1) will
decrease the spread of the posterior belief that a given
model M(θ) coincides with the accurate model S.
Hence, an analyst ignoring anything else will con-
verge in his belief on some model M(θ) = S. As a
consequence, his predictions of real system features,
based on his converging belief, will grow more and
more (over)confident – although off the mark – as the
data accumulates. This paradoxical behavior is a di-
rect consequence of the closed world assumption. It

1For the sake of simplicity, we assume throughout the paper
that Ω ⊆ R

n is a continuous space, and that a prior probability
measure P : σ(Θ) → [0, 1] over a σ-field of Θ is continuous, i.e.,
can be described by a probability density on Θ.

is therefore desirable to drop this assumption, and di-
rectly include an indicator for S 6∈ {M(θ)|θ ∈ Θ} in
the updating process. In this paper, we present such
a framework.

A similar concern about Bayesian learning on model
quality and the subsequent use of posterior beliefs for
prediction of future observations has been raised by
Draper [2] and, more recently, Goldstein and Rougier
[3, 4]. Draper criticizes the practice of neglecting
structural uncertainty, and proposes to extend prior
and likelihood to the space of possible model struc-
tures. His approach [2] leads to an increased spread
of the posterior on the model ensemble. Goldstein
and Rougier highlight the importance to assess the
discrepancy between the ensemble of available mod-
els and the ‘ideal’ model which captures the system
up to an additive noise term. They coined the term
‘reified’ for the ‘ideal’ reference model. Obviously,
the idea of a ‘reified model’ is closely related to what
we call accurate model here. In [3, 4], Goldstein and
Rougier propose to address model discrepancy by in-
cluding a meta-model of it in the updating process,
and offer guidelines how such a meta-model might be
constructed. This is a very challenging task. As indi-
cated above, we take a different approach. We do not
try to find a positive expression for model discrepancy,
or the extension of prior and likelihood to the space of
possible model structures, but rather seek to include
an indicator for the negative result that model dis-
crepancy impinges on the predictive accuracy of the
model ensemble.

The paper is organized as follows. Section 2 presents
a simple example of autoregressive (AR) processes in
which the application of standard Bayesian updating
is shown to fail if the model hypotheses have limited
accuracy to predict the real system. Section 3 con-
tains the core of the paper, detailing our derivation of
an open version of Bayes’ rule that allows to drop the
closed world assumption. This rule is put into opera-
tion for our example of AR processes in Section 4. We
conclude by highlighting the challenges for an appli-
cation of the open Bayes’ rule to real world problems
in Section 5.

2 Limitations of Bayes’ rule: Example
of autoregressive (AR) processes

Let us assume the following dynamic ‘real system’
evolving over n time steps.

Y (n) = (ξ1, α
∗
1ξ1 + ξ2,X3, ...,Xn) (2)

with Xt = α∗
1Xt−1 + α∗

2Xt−2 + ξt , t ≥ 3 (3)

ξt ∼ N(0, σ∗
ξ ) iid process (white noise) ,



where we require the AR(2) process Xt to be station-
ary. An AR(2) process described by Equation (3)
is stationary iff α∗

1 + α∗
2 < 1, α∗

2 − α∗
1 < 1, and

|α∗
2| < 1. For the sake of simplicity, we have ne-

glected any measurement error in observing the real
system, and therefore can identify it directly with the
observable Y (n). Let us further assume that our en-
semble of model hypotheses for Y (n) is restricted to
a closed set of stationary AR(1)-process with noise
term ξt ∼ N(0, σ∗

ξ ):

{M(α1) := (ξ1,X
′
2, ...,X

′
n) | X ′

t = α1X
′
t−1 + ξt ,

t ≥ 2 , −ᾱ ≤ α1 ≤ ᾱ , ᾱ := 0.995} . (4)

Obviously, the model ensemble contains an accurate
model S if α∗

1 ∈ [−ᾱ, ᾱ] and α∗
2 = 0. In this case,

we find S := M(α∗
1) = Y (n). We will discuss be-

low whether there can be an accurate model in the
ensemble if α∗

2 6= 0.

After having received a realization ŷ(n) = (ŷ1, ..., ŷn)
of Y (n), we can apply Bayesian updating to our prior
belief about the accuracy of the model hypotheses
M(α1) as defined by a probability density ρ(α1).
Without loss of generality, let the prior ρ(α1) be
uniformly distributed on [−ᾱ, ᾱ]. As shown in Ap-
pendix A, the likelihood of having obtained the real-
ization ŷ(n) from an AR(1)-process with propagator
α1 is given by

L(α1; ŷ(n)) ∼ N





α̂(n)

1 − β̂(n)
,

σ̂(n)
√

1 − β̂(n)



 , (5)

where α̂(n), σ̂(n), and β̂(n) are estimated from
the observed time series ŷ(n) as defined in Equa-
tion (26), (27), and (28), respectively. Hence, applica-
tion of Bayes rule (Equation 1) with a uniform prior
for α1 yields the following posterior probability den-
sity on [−ᾱ, ᾱ]:

ρ(α1|ŷ(n)) =

exp

(

− 1−β̂(n)
2σ̂(n)2

(

α1 − α̂(n)

1−β̂(n)

)2
)

ᾱ
∫

−ᾱ
exp

(

− 1−β̂(n)
2σ̂(n)2

(

α1 − α̂(n)

1−β̂(n)

)2
)

dα1

. (6)

Equation (6) can be used to test the effect of the
closed world assumption on the Bayesian updating
process. For the experiment, we generated 200 re-
alizations of time series ŷ(n) with length n = 5000
for four different AR(2)-processes with σ∗

ξ = 1, α∗
1 =

0.866 and α∗
2 = {−0.9,−0.3, 0, 0.06}. Note that in the

asymptotic limit n → ∞ any AR(k)-process is nor-

mally distributed ∼ N

(

0, σ/
√

1 −
∑k

i=1 αiρi

)

, with

ρi the autocorrelation of lag i [7]. Therefore, re-
moving the time index from the observations renders
AR-processes of different order indistinguishable from
each other. It is in this sense, that we can calculate
an AR(1)-equivalent of an AR(2)-process with prop-
agators α1 and α2. The AR(1)-equivalent yielding a
normal distribution with identical standard deviation
in the asymptotic limit has the propagator

αequiv =
√
α1ρ1 + α2ρ2 =

√

α2
1

1 + α2

1 − α2
+ α2

2 . (7)

For the four different AR(2)-processes chosen above
we find AR(1)-equivalents with propagators αequiv =
{0.922, 0.703, 0.866, 0.922}. It can be seen that the
asymptotic distribution of the two AR(2)-processes
with α∗

2 = −0.9 and α∗
2 = 0.06 are indistinguishable.

We have considered AR(2)-processes with very pro-
nounced tails compared to ξ, because we are inter-
ested in the ability of the model ensemble M(α1) to
predict in particular the tails of the distributions. In
practice, a good prediction of the tails is often what
matters most. Note that it follows from Equation (7)
that there will exist an accurate model S in the ensem-
ble of model hypotheses M(α1) even if the real system
is described by an AR(2)-process with α2 6= 0 - if we
are only interested in predicting the asymptotic distri-
bution of future observations. It will be interesting to
see whether Bayesian updating is capable to converge
to the propagator of the AR(1)-equivalent model.

Figure 1 shows the result of Bayesian updating for the
four different AR(2)-processes. We have updated the
posterior belief about α1 (see Equation 6) after each
20 new observations. Shown is the development of the
90% confidence limits for the mean value of the poste-
rior distribution. The confidence limits were derived
from the sample of 200 time series used in the updat-
ing process. It can be seen that the posterior mean
converges to the correct value of α∗

1 = 0.866 (hori-
zontal solid line) in the case where the real system
is described by an AR(1) process (α∗

2 = 0). Conver-
gence is still good if only a small deviation from the
AR(1) assumption is considered (α∗

2 = 0.06). In this
case, the posterior mean converges to the propaga-
tor αequiv = 0.922 of the AR(1)-equivalent process.
However, if the deviation from the AR(1) assumption
is negative and increases in magnitude (α∗

2 = −0.3),
the posterior belief converges to a biased value be-
low αequiv. In the extreme case α∗

2 = −0.9, Bayesian
learning leads to a spurious result. Since the pos-
terior distribution has contracted strongly after sev-
eral thousand observations (see black dots on the
right axis), the updating procedure has settled on the
wrong region of α1-space with very high confidence.
This is a direct consequence of the closed world as-
sumption.
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Figure 1: Updated belief about the propagator α of an
hypothetical AR(1)-process after n observations. The
lower and upper bound of the 90% confidence inter-
val for the mean value of the posterior belief (derived
from the sample of 200 time series) are plotted. Hor-
izontal lines indicate the propagator value αequiv of
the equivalent AR(1)-process in the asymptotic limit.
αequiv for the AR(2)-process with α∗

2 = −0.9 is identi-
cal to the case α∗

2 = 0.06. Black dots on the right axis
indicate the range between the 5% and 95% quantiles
of the posterior belief after 5000 observations.

We briefly assess the consequences for predicting the
distribution of system observations y in the asymp-
totic limit. As mentioned above, we know that
the asymptotic distribution of an AR(1) process for
given values of α1 and σξ is defined by ρ(y|α1) ∼
N(0, σξ/

√

1 − α2
1). Hence, if our belief about α1 is

described by the posterior ρ(α1; ŷ(n)), our prediction
for the distribution of system observations based on
past data ŷ(n) is given by

ρ(y|ŷ(n)) =

∫ ᾱ

−ᾱ
ρ(y|α1) ρ(α1; ŷ(n)) dα1 . (8)

Figure 2 shows predictions for the case of learning
from a realization of the AR(1)-process with α∗

1 =
0.866 and α∗

2 = 0. The dotted line depicts the pre-
diction on the basis of the uniform prior, before any
learning occurred. Interestingly, the assumption of
the uniform prior strongly underestimates the prob-
ability mass in the flanks of the distribution. The
example shows that in general it is not warranted to
associate the uniform prior with a conservative (or
non-informative) choice of belief. After the uniform
prior is updated with observations ŷ(n) the predic-
tions converge very quickly to the asymptotic distri-
bution of the ‘real’ system. Figure 2 shows that the
prediction after 5000 observations is nearly identical
with the ‘real’ distribution.

While Bayesian learning was very successful for the
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Figure 2: Predictions based on the belief about α1

for the case α∗
1 = 0.866 and α∗

2 = 0. The solid line
shows the asymptotic distribution of the ‘real’ AR(1)
process. The dotted line shows the prediction be-
fore any learning occurred (based on a uniform prior
for α ∈ [−ᾱ, ᾱ]). The updated prediction after 5000
observations (dashed line) lies almost exactly on the
asymptotic distribution of the ‘real’ system.
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Figure 3: Predictions based on the belief about α1 for
the case α∗

1 = 0.866 and α∗
2 = −0.9. Solid, dotted and

dashed lines as described in Figure 2.

case where the ‘real’ system is part of the ensemble
of model hypotheses, the situation is markedly differ-
ent for an AR(2)-process which strongly deviates from
the AR(1)-assumption (α∗

2 = −0.9). As depicted in
Figure 3, updating with observations ŷ(n) leads to a
further decrease in variance of the prediction as com-
pared to the initial prediction based on the uniform
prior. This is exactly the opposite of what should hap-
pen, because the asymptotic distribution of the ‘real’
system exhibits a much larger spread than both the
initial and informed prediction. As is apparent from
Figure 3, these spurious predictions strongly underes-



timate the tails of the distribution, and may therefore
provide a false sense of security. What makes matters
worse is that no amount of additional data will be able
to rectify the situation. In contrast, the posterior be-
lief will continue to sharpen, and the spread of the
prediction will further decrease. This example shows
that the closed world assumption underlying Bayes’
rule can lead to spurious beliefs and predictions.

3 Extension of Bayes rule: dropping
the closed world assumption

Given the spurious results that can emerge from a
naive application of Bayes’ rule, we are looking for
an extension of Bayesian updating that includes an
indicator for the overall accuracy of the model en-
semble to reproduce ‘real’ system observations. This
would allow us to drop the assumption that an accu-
rate model S has to be included in the set of available
models M(θ), θ ∈ Θ with certainty. A natural first
step in this direction is to extend Bayes rule to a larger
space Ω ⊃ Θ for which the assumption S = M(ω)
will be true for at least one ω∗ ∈ Ω. Similar exten-
sions are also the starting points for the proposals by
Draper [2], and Goldstein and Rougier [4]. We assert
that such a hypothetical space Ω is constituted by the
space of all models, known and unknown. We think
of Ω as a continuous vector space with large, but fi-
nite dimension that contains the parameter vectors ω
for a large, but finite list of time-discrete2 equations
and relations. A model ensemble, i.e., a reduced list
of parameterized equations, is characterized in this
space by fixing the parameter values in some dimen-
sions (collected in ψ), and allowing to vary – within
bounds – the remaining parameters θ. Hence, a choice
of model ensemble M(θ, ψ0), θ ∈ Θ, defines a Carte-
sian product Ω = Θ×Ψ, where the parameters ψ ∈ Ψ
are fixed at ψ0, and only θ ∈ Θ can be varied.

So far, we have gained little because the nature of
models in the residual space Θ × (Ψ − {ψ0}) is com-
pletely unknown to us. Thus, our prior belief about
the accuracy of unknown models in that space is
vacuous. Fortunately, imprecise probability theory
allows to capture a vacuous belief without having
to assess the cardinality of its underlying space [9].
This is simply done by the vacuous probability model
V(Θ× (Ψ−{ψ0})) comprising the set of all probabil-
ity distributions with support on Θ × (Ψ − {ψ0}) [8,
Chapter 2.9.1]. Since the complement space Θ×{ψ0}
has zero measure, V(Θ × (Ψ − {ψ0})) is identical to

2The assumption of time-discrete equations accounts for the
numerical implementation of time-continuous differential equa-
tions. It shall also extend to other, e.g. spatial, dimensions
if partial differential equations are concerned. Thus, we are
thinking of computer models here.

V(Θ×Ψ) almost everywhere. Therefore, we will con-
tinue to use the latter vacuous probability model in
what follows.

We assume that our prior belief about the ‘known’
model ensemble M(θ, ψ0), θ ∈ Θ, i.e. more precisely,
the set of models considered for our particular as-
sessment, is described by ν(θ, ψ0). How should we
combine this prior belief with the vacuous belief on
the complementary unknown space? It seems to be a
precondition of human agency that we assign non-zero
probability to our conception of the ‘real world’ even
though it exists on a space with zero measure. Thus,
when it comes to considering the unknown, our prior
belief on the space of all models will be degenerate,

ν(θ, ψ) ∈ p0 ν(θ, ψ0) δ(ψ − ψ0)

+ (1 − p0) V(Θ × Ψ) , (9)

where δ(ψ − ψ0) denotes the Dirac measure which
concentrates all probability mass on ψ = ψ0, i.e.,
the set of models available to us. The probability
0 ≤ p0 ≤ 1 weighs our prior belief across the two
different domains of knowledge, and may be associ-
ated with the prior level of confidence that the model
ensemble M(θ, ψ0), θ ∈ Θ can accurately describe
the ‘real’ system features of interest. For p0 = 1,
we completely ignore the possibility that the accurate
model may still be unknown. This choice reflects the
closed world assumption underlying the standard ap-
plication of Bayesian learning. In the other extreme,
p0 = 0, we are completely lost in the unknown, and
cannot expect to learn anything from whatever data
we receive. Here, we suggest to choose p0 as to re-
flect a typical confidence level used in statistics, e.g.,
p0 = 0.95. However, the choice of p0 will not influence
the posterior belief significantly (see Equation 15) as
long as it is not set to the extreme values of 0 or 1.

Since we cannot talk in positive terms about what we
do not know, we are not searching for the posterior be-
lief ν(θ, ψ|ŷ(n)) on the space of all models, but rather
for its marginal distribution ρ(θ|ŷ(n)) on the subspace
of known models. After receiving an observed time se-
ries ŷ(n), Bayes’ rule gives us the following expression
for the marginal posterior belief:

ρ(θ|ŷ(n)) =

∫

Ψ
L(θ, ψ; ŷ(n)) ν(θ, ψ) dψ

∫

Ψ×Θ
L(θ, ψ; ŷ(n)) ν(θ, ψ) dψdθ

. (10)

We follow the usual practice to normalize the likeli-
hood on the space of known models to one. Hence,
we divide both the nominator and denominator by
the maximum likelihood L(θ′, ψ0; ŷ(n)) that we find
on the model ensemble M(θ, ψ0), θ ∈ Θ. Inserting
the prior belief described by Equation (9) into above



expression, we then find

ρ(θ|ŷ(n)) ∈
p0 µL(θ) + (1 − p0)VL(Θ)

∫

Θ
(p0 µL(θ) + (1 − p0)VL(Θ) ) dθ

, (11)

µL(θ) :=
L(θ, ψ0; ŷ(n))

L(θ′, ψ0; ŷ(n))
ν(θ, ψ0) ,

VL(Θ) :=

∫

Ψ

L(θ, ψ; ŷ(n))

L(θ′, ψ0; ŷ(n))
V(Θ × Ψ)dψ ,

where VL(Θ) is the unknown set of marginals on Θ
that emerge from multiplying all prior probability dis-
tributions on Θ×Ψ with an unknown likelihood func-
tion. Note that it is not a vacuous probability model
itself, since its elements are not normalized. However,
this set of marginals is contained in the set of all prob-
ability distributions on Θ multiplied by the range of
values covered by the likelihood ratio, i.e.

VL(Θ) ⊂ [0,L∗(n)] · V(Θ)

with L∗(n) := max
(θ,ψ)∈Θ×Ψ

L(θ, ψ; ŷ(n))

L(θ′, ψ0; ŷ(n))
, (12)

Here, the zero lower bound of the interval accounts
for the fact that there will certainly be a model with
zero likelihood in the space of all models. Note that
the nominator of L∗(n) describes the likelihood func-
tion on the entire model space prior to normalization,
and therefore can take any value in R

+
0 . In the fol-

lowing, we will replace VL(Θ) in the extended Bayes’
rule (11) by its superset [0,L∗(n)]·V(Θ) due to greater
methodological convenience. This substitution will
give us outer bounds on the set of posterior proba-
bilities, but we assert that the associated information
loss is minimal. As an example, consider the asymp-
totic case n → ∞ for which the likelihood function
will concentrate around the accurate model at the
point (θ∗, ψ∗) (L(θ, ψ; ŷ(n)) → δ(θ − θ∗) δ(ψ − ψ∗)).
Then, VL(Θ) will contain only functions proportional
to δ(θ− θ∗), which constitutes a considerably smaller
set than the functions proportional to V(Θ). However,
since we are completely ignorant about the location
of θ∗, we need to consider δ(θ−θ∗) for all possible val-
ues θ∗ ∈ Θ, which coincides with the set of extreme
points of V(Θ).

The set of Dirac measures δ(θ− θ̃) δ(ψ− ψ̃), (θ̃, ψ̃) ∈
Θ × Ψ comprises the extreme points of the vacuous
probability model V(Θ×Ψ) on the entire model space.
They are all we need to calculate the extreme points
of the imprecise posterior probability given by Equa-
tion (11) [8, Theorem 8.4.8]. They also tell us that

0 ≤
∫

Θ

VL(Θ) dθ ≤ L∗(n) , (13)

where the upper bound is achieved for the Dirac prior
δ(θ − θ∗) δ(ψ − ψ∗).

We are now in the position to separate the extended
Bayes rule (11) into a term concerned with updating
our prior belief on the model ensemble M(θ, ψ0), θ ∈
Θ (the original Bayes’ rule), and a term that sum-
marizes the contribution from the residual space of
unknown models.

ρ(θ|ŷ(n)) ∈

(1 − ε(λ, p0))
µL(θ)

∫

Θ
µL(θ) dθ

+ ε(λ, p0)V(Θ) , (14)

ε(λ, p0) :=
(1 − p0)λ

p0

∫

Θ
µL(θ) dθ + (1 − p0)λ

, (15)

with λ ∈ [0,L∗(n)] .

Since the contamination ε(λ, p0) increases with λ, the
most conservative posterior belief – encompassing the
set of posterior probabilities for all possible choices
of λ – is obtained in the limit λ → L∗(n). There-
fore, we focus in the following on the most conser-
vative case, for which the vacuous probability model
is mixed into the posterior belief with contamina-
tion ε(L∗, p0). The ε-contamination model in Equa-
tion (14) has been investigated extensively in the con-
text of robust Bayesian and imprecise probability ap-
proaches (see, e.g., [1, 5]). It is a very tractable model,
since it can be easily characterized by its set of ex-
treme points or its coherent lower probability which
constitutes a belief function. Note that we can re-
cover the standard case of Bayesian learning under the
closed world assumption from Equations (14) and (15)
by choosing p0 = 1, implying ε(L∗, p0) = 0. For
p0 ∈ (0, 1), the ‘contamination’ ε(L∗, p0) of our poste-
rior belief will grow with increasing L∗(n) (see Equa-
tion 15). What can we say about L∗(n), and how will
it behave as a function of our observations ŷ(n)?

In general, we expect the likelihood L(θ, ψ; ŷ(n)) to
be largest at an unknown point (θ∗, ψ∗) where an ac-
curate model S is located. The probability that it will
be otherwise becomes infinitesimal as the number of
observations n → ∞. Hence, we assert that L∗(n) is
obtained at the point (θ∗, ψ∗). Given the definition of
an accurate model in the introduction, we know that
Yt−M(θ∗, ψ∗) = ǫt ∼ N(0, σ) at this point. Thus, for
a given observation ŷ(n) = (ŷ1, ..., ŷn), we construct
a random variable

L∗(n) :=

1√
2π

n
σ2n

exp
(

− 1
2σ2

∑n

t=1 ǫ
2
t

)

L(θ′, ψ0; ŷ(n))
,

= exp

(

−1

2
(

n
∑

t=1

ǫ2t
σ2

− ŝ(θ′))

)

(16)

with ŝ(θ′) :=

n
∑

t=1

(ŷt −M(θ′, ψ0)t)
2

σ2
,



where the denominator (respectively the second term
in the exponent) includes the likelihood of the ‘best’
model M(θ′, ψ0) (respectively the least square sum
of its residual) in our ensemble of available models
(compare Equation 12). Hence, our quantity of inter-
est, i.e., the realization L∗(n) of L∗(n), depends on
the actual realization (ǫ̂1, ..., ǫ̂n) as well as the resid-
ual ŝ(θ′) of the ‘best’ model M(θ′, ψ0). While we can
calculate ŝ(θ′) after having received the observation
ŷ(n), we cannot access the realization ǫ̂ of the resid-
ual between ŷ(n) and the unknown accurate model
M(θ∗, ψ∗). We only know that ǫ ∼ N(0, σ) is an iid
Gaussian process, and its variance is distributed as
χ2:

s(n) :=
n
∑

t=1

ǫ2t
σ2

∼ χ2
n−1 . (17)

Therefore, we only can try to derive a useful estimator
E(L∗(n)) of L∗(n) from the asymptotic χ2

n−1 distri-
bution of s(n):

E(L∗(n)) = exp

(

−1

2
(E(s(n)) − ŝ(θ′))

)

(18)

Such an estimator E(L∗(n)) will be useful for our pur-
pose, if it discriminates between the two cases where
an accurate model S is contained in the ensemble, i.e.,
it exists θ̃ ∈ Θ with S = M(θ̃), and where it is not.
In the former case, we can assume for large numbers
of observations that S will coincide with the ‘best’
model M(θ′, ψ0) which exhibits the maximum likeli-
hood on the space of available models Θ. In the latter
case (S 6= M(θ′, ψ0)), we assert for large numbers n
of observations that the residual ŝ(θ′) will grow faster
than any estimator E(s(n)) constructed from a χ2

n−1

distribution, i.e., E(s(n)) − ŝ(θ′) → −∞ for n → ∞,
and thus E(L∗(n)) → ∞ and ε(E(L∗), p0) → 1.

It remains to investigate the asymptotic behavior for
the case S = M(θ′, ψ0), for which the residual be-
tween the ‘best’ model and the data will also be a
realization of an iid Gaussian process N(0, σ). Hence
ŝ(θ′) will constitute a draw from the same χ2

n−1 dis-
tribution on which E(s(n)) is based. Since χ2

n−1 be-
comes approx. normal for n→ ∞, it can be seen that
s(n)− s(θ′) will also be approx. normally distributed
with zero mean and variance → ∞. This shows that
the estimator E(s(n)) needs to be carefully chosen in
order to avoid a situation where ε(E(L∗), p0) can take
any value between 0 and 1, if S = M(θ′). Therefore,
we select a q-quantile of the χ2

n−1-distribution

∫ qs

0

χ2
n−1(s) ds := q ,

as estimator E(s(n)). The quantile qs will be larger
than ŝ(θ) with probability q, if the accurate model S is

contained in the model ensemble. We use qs to define
our estimator E(L∗(n)) of L∗(n) in Equation 15), i.e.,

E(L∗(n)) := e
−n−1

2

(

qs
n−1−

ŝ(θ′)
n−1

)

. (19)

Equation (19) constitutes the final building block for
our extension of Bayes’ rule that allows us to drop the
closed world assumption. This open version of Bayes’
rule is summarised by Equations (14), (15) (with
L∗(n) replaced by the estimator E(L∗(n))), and (19).
It should be noted that the extended Bayes’ rule de-
pends on the choice of confidence level q for the upper
limit of the variance of the residual ǫ̂. This makes it
clear that in our attempt to account for the space of
unspecified models, we allowed classical statistics to
enter our otherwise Bayesian approach through the
backdoor. For large n, the introduction of a contam-
ination term in the posterior belief amounts to a hy-
pothesis test on our best model M(θ′). In this case,
E(L∗(n)) will jump rapidly from zero to a very large
number, when the residual of our best model M(θ′)
crosses the upper limit qs at the q-confidence level (see
Equation 19). This will cause the contamination term
ε(E(L∗), p0) to jump from 0 to 1 (see Equation 15).
Therefore, our choice of E(L∗(n)) can lead to strong
fluctuations in the contamination term if the residual
of the best model M(θ′) is hovering around the up-
per limit qs. The responsiveness of the contamination
term can be reduced by replacing the linear scaling
of the exponent of E(L∗(n)) with increasing number
of observations by a sublinear function. We suggest
that this is most effectively done by using the scal-
ing of the χ2

n−1 distribution for increasing degrees of
freedom, and offer the following heuristic expression
as an alternative choice:

E(L∗(n)) := e
− 1

2 (qs−n+1)
(

qs
n−1−

ŝ(θ′)
n−1

)

. (20)

4 Prediction with ε-contamination:
Example of AR processes continued

We now put the conceptual framework developed in
the previous section into operation for our example
of AR processes. The setup is identical to what was
described in Section 2. For applying our open ver-
sion of Bayes’ rule to this updating problem, we need
to calculate the development of the contamination
ε(E(L∗), p0) for time series of observations ŷ(n) with
increasing length. We do this for the random sample
of 200 time series from Section 2, and for both choices
of E(L∗(n)) proposed in Equations (19) and (20). We
use a prior weight p0 = 0.95 on our model ensemble
M(α1), α ∈ [−ᾱ, ᾱ], and choose a confidence level
of q = 0.99 to determine the upper limit qs on the
residual variance of the accurate model.



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of observations n

C
o

n
ta

m
in

a
ti
o

n
 ε

 α
1
* = 0.866, α

2
* = −0.90

 α
1
* = 0.866, α

2
* = −0.30 (after Equation 19)

 α
1
* = 0.866, α

2
* = −0.30 (after Equation 20)

Figure 4: Behavior of lower and upper bounds of
the 90% confidence interval for the ε-contamination.
The ε-contamination for the models α∗

1 = 0.866 and
α2 = {0, 0.06} falls immediately to zero and stays
there throughout the 5000 observations. In contrast,
the ε-contamination for the model with α∗

2 = −0.9
jumps quickly to one (after 100 observations).

The lower 5% and upper 95% quantile limits (de-
duced from the sample of 200 time series) for the
value of the contamination ε(E(L∗), p0) are shown in
Figure 4. The contamination is zero for the cases in
which standard Bayesian updating did well. Hence,
in these cases our posterior belief about model ac-
curacy and the associated prediction of the asymp-
totic distribution of system observations is identical
to what we have found in Section 2. In the re-
maining two cases where standard Bayesian updat-
ing failed, the situation is markedly different. For
α2 = −0.9, the contamination rapidly approaches
ε(E(L∗), p0) = 1, rendering our posterior belief vacu-
ous after 100 observations at the latest. For the less
extreme case α2 = −0.3, the increase in contamina-
tion is much slower, reflecting the results shown in
Figure 1 that the posterior belief about the true prop-
agator value remains in the vicinity of the AR(1)-
equivalent propagator for several thousand observa-
tions. In that boundary case, the contamination term
based on Equation (19) can fluctuate indeed strongly
up to n = 4000 observations depending on the ac-
tual time series. The alternative contamination term
based on Equation (20) offers a smoother response
(see Figure 4), but on the downside responds slower
to pick up the lack of accuracy in the model ensemble.
We suggest that the proper choice of contamination
term will depend on the application.

We now investigate the consequences of the grow-
ing contamination for the posterior belief in the case
α∗

2 = −0.9. Our main question is whether the as-

sociated predictions of the asymptotic distribution of
system observations can anticipate quickly the pos-
sibility of strong tails that was missed by standard
Bayesian updating (see Figure 3). The analysis will
also illustrate how the ε-contamination model can be
used in statistical inference.

Due to the mixture with the vacuous probability
model V(A1), A1 = [−ᾱ, ᾱ], the posterior belief as
expressed in Equation (14) is imprecise. Since it in-
cludes Dirac measures, the set of posterior probabil-
ities can be depicted as a band of cumulative distri-
butions (CDFs), but not as density band. The upper
and lower CDFs set up by the ε-contaminated pos-
terior belief model are given by (using the shorthand
ε∗ := ε(E(L∗), p0)):

F (α1; ŷ(n)) = (1 − ε∗)

∫ α1

−ᾱ
ρ(α′

1|ŷ(n)) dα′
1

+ ε∗ H(α1 − ᾱ) (21)

F (α1; ŷ(n)) = (1 − ε∗)

∫ α1

−ᾱ
ρ(α′

1|ŷ(n)) dα′
1

+ ε∗ , (22)

where H denotes the Heavyside function which adds
the missing probability mass at the upper bound of
the support for α1. It is important to note that
the distribution band defined by F (α1; ŷ(n)) and
F (α1; ŷ(n)) is not equivalent to the ε-contamination
model, but a true superset of it. Every distribution
contained in the ε-contamination model will be con-
tained in the distribution band, but not vice versa

Figure 5 shows the change of posterior distribution
band with increasing number of observations of an
AR(2) process with α∗

2 = −0.9. It can be seen that the
imprecision in the posterior belief increases quickly
with observations. After n = 80 observations the pos-
terior belief becomes vacuous, and the associated dis-
tribution band would cover the entire graph. At this
point, any predictive power has been lost.

We take a closer look on the prediction of the asymp-
totic distribution of system observations ρ(y|ŷ(n)) in
Figure 6. The prediction is again imprecise, and its
lower and upper bound can be calculated on the basis
of Equation (8) by recalling that these bounds are set
up by the Dirac measures contained in the vacuous
probability model V(A1). Those Dirac measures allo-
cate the probability mass carried by the contamina-
tion ε∗ := ε(E(L∗), p0) at a value of α that minimizes
respectively maximizes the contribution to ρ(y|ŷ(n)).

ρ(y|ŷ(n)) = (1 − ε∗)

∫ ᾱ

−ᾱ
ρ(y|α1) ρ(α1|ŷ(n)) dα1

+ ε∗ min
α1∈[−ᾱ,ᾱ]

ρ(y|α1) . (23)
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Figure 5: Cumulative posterior distribution bands for
the propagator α1 learned from a realization of the
AR(2)-process with α∗

1 = 0.866 and α∗
2 = −0.9. The

distribution band for n = 80 observations is vacuous
and covers the entire graph.

ρ(y|ŷ(n)) = (1 − ε∗)

∫ ᾱ

−ᾱ
ρ(y|α1) ρ(α1|ŷ(n)) dα1

+ ε∗ max
α1∈[−ᾱ,ᾱ]

ρ(y|α1) . (24)

Figure 6 shows the predicted bounds on the asymp-
totic distribution of system observations. It can be
seen that the imprecision in the prediction grows
quickly, and its range covers the tails after n = 60
observations. The full asymptotic distribution is con-
tained in the predicted range after n = 80 observa-
tions when the posterior belief has become vacuous.
At this point, the analyst employing our open ver-
sion of Bayes’ rule will have noticed that it is time to
engage in type (I) learning as defined in the introduc-
tion, and to try to extend the set of models that she
considers (e.g., to the set of all AR(2)-processes).

5 Conclusions

We have presented a framework for updating belief
about prediction accuracy across an ensemble of avail-
able models using observations of the system that
those models are supposed to predict. While following
the Bayesian approach to learning, we have dropped
the assumption that an accurate model – predicting
the system observations up to an iid Gaussian process
– is contained in the model ensemble with certainty as
would be required by Bayes’ rule in its conventional
form. This is an achievement because the closed world
assumption can lead to spurious beliefs about model
accuracy and false predictions, as was demonstrated
with an example of AR processes. By drawing on ele-
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Figure 6: Predictions for the asymptotic probabil-
ity distribution of system observations for the AR(2)-
process with α∗

1 = 0.866 and α∗
2 = −0.9. The quickly

growing ε-contamination destroys the predictive ac-
curacy of the model ensemble after 80 observations.

ments of imprecise probability theory and the knowl-
edge of asymptotic distributions for large samples, we
established an open version of Bayes’ rule that extends
its consideration to the unknown space of unspeci-
fied models, and thus includes the possibility that an
accurate model might not be contained in the set of
available models. Under the open Bayes’ rule, the pos-
terior belief takes on the form of an ε-contamination
model, where the contamination ε is updated along
with the prior belief on the set of available models. A
growing contamination will indicate limited accuracy
of the entire model ensemble, and will eventually lead
to a vacuous posterior belief. In this way, false pre-
dictions due to limitations of the models under con-
sideration can be avoided as was demonstrated again
with an example of AR processes.

Also the method presented here has proven success-
ful – in a stylized example – to discriminate between
cases where standard Bayesian updating works well,
and where it fails, this paper can offer only a proof of
concept. It will require further research to investigate
how the open Bayes’ rule works in practice. In a next
step we intend to apply it to the comparison of the
20th century temperature record with a simple cli-
mate model parameterized in terms of key quantities
influencing the temperature response [6]. As a matter
of concern, we will have to analyze whether the open
Bayes’ rule in its current form is too discriminative
as it may discount every model that cannot explain
the data up to an additive Gaussian process. In prac-
tice, such a strong requirement is hard to fulfill, not
the least because the observations might be overlaid
by a systematic non-Gaussian error due to changing



measurement practices over time. This, however, is
a general problem for model validation and model-
based prediction, and by no means limited to the ap-
plication of the open Bayes’ rule. In these cases it
may be unavoidable to attempt adding and updating
a positive model for the discrepancies between actual
measurements and ‘ideal’ measurements (and, if nec-
essary, between actual model and ‘ideal’ model) to
the analysis as has been proposed by [4]. In any case,
the open Bayes’ rule can be a valuable tool to assess
whether such additions are bearing fruit.

A Calculation of the likelihood for
the AR(1) propagator α

Let an AR(1) process be defined by X1 = ξ1, Xt =
αXt−1+ξt, t ≥ 2, and ξt ∼ N(0, σξ). Estimators α(n)
for the propagator α and s(n) for the variance of the
AR(1) process are defined in terms of the observation
Y (n) = (X1, ...,Xn) after n time steps

s(n) =
1

n− 1

n
∑

t=1

X2
t , (25)

α(n) =
1

n− 1

∑n

t=2 XtXt−1

s(n)
. (26)

Here, we deviate from the standard choice of these es-
timators [7] by omitting the subtraction of the sample
mean (1/n

∑n

t=1Xt → 0 for n→ ∞) in the estimator
for the variance, and by inflating the estimator for the
propagator by n/(n − 1). The reason for this is that
the distribution of those estimators for a given choice
of α, σξ can be calculated easily:

ρ(α(n), s(n)|α, σξ)

∼ e
− 1

2σ2
ξ

(

n
∑

t=2
(Xt−αXt−1)

2+X2
1

)

= e
− (n−1) s(n)

2σ2
ξ

(

1+α2−2αα(n)− α2 X2
n

(n−1) s(n)

)

.

Once we have observed an actual realization ŷ(n) =
(ŷ1, ..., ŷn), fixing the values of the estimators at α̂(n)
and V̂ (n), we can calculate a likelihood function
L(α; ŷ(n)) ∼ ρ(α̂(n), V̂ (n)|α, σξ) for the propagator
α of the underlying AR(1) process (assuming that σξ
is known). With

σ̂(n) :=
σξ

√

(n− 1) ŝ(n)
, (27)

β̂(n) :=
ŷ2
n

(n− 1) ŝ(n)
, (28)

we find

L(α; ŷ(n)) ∼ e
− 1

2σ̂(n)2
((α−α(n))2−b̂(n)α2)

∼ N





α̂(n)

1 − β̂(n)
,

σ̂(n)
√

1 − β̂(n)
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