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On dominance and rationalizability-- D.Pearce’s (1984) result.   
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1. Structural assumptions used in this overview 

•  Act-state independence: no cases of “moral hazards” are considered – so strict 
dominance is valid. 

 
Reminder:  Consider the following binary state, two act decision problem, with 

outcomes ordinally (or cardinally) ranked so that more is better. 

 
 ωωωω1 ωωωω2

Act1 3 1 
Act2 4 2 

 
Act2 strictly dominates Act1.  Nonetheless, if  

Prob(ωωωωi | Acti)   ≈≈≈≈   1   (i = 1, 2), 

then dominance carries no force.  A rational decision maker prefers Act1 to Act2. 

In today’s overview only decision problems without moral hazards are 

considered. 
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•  State-independent utility: no cases where the value of a prize depends upon the 

state in which it is received. 
 
Reminder:   Once we entertain, generalized state-dependent utilities for prizes, 
there is maximal under-determination (= up to mutual absolute continuity of 
probability) of probability/utility pairs that represent the very same preference 
ranking of acts. 

 
Matrix of m-many acts on the partition of n-many uncertain states 

 

Act1 

Act2 

Acti 

Actm 

ω1 ω2 ωj ωn 

o11 o12 o1j o1n 

o21 o22 o2j o2n 

oi1 oi2 oij oin 

om1 om2 omj omn 
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In accord with generalized SEU preference over acts, suppose  

Act1 is dispreferred to Act2  if and only if   ∑∑∑∑jP(ωωωωj)Uj(o1j)  ≤≤≤≤  ∑∑∑∑jP(ωωωωj)Uj(o2j) 
 

Choose P* mutually absolutely continuous with P and define the constants  

cj =  P(ωωωωj)/P*(ωωωωj)   

and let                U*j(•••• ) = cjUj(•••• )            (j = 1, …, n). 

 

Then, trivially,  

∑∑∑∑jP(ωωωωj)Uj(o1j)  ≤≤≤≤  ∑∑∑∑jP(ωωωωj)Uj(o2j)  if and only if   ∑∑∑∑jP*(ωωωωj)U*j(o1j)  ≤≤≤≤  ∑∑∑∑jP*(ωωωωj)U*j(o2j). 

 

Note well: This problem arises even when one of the representations is by a 

state-independent utility! 

 

 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 5

•  The focus here is on normal form (aka “strategic form”) games/decisions.   
This is where the decision maker can commit, in advance, to all contingency 
planning.   
 

Reminder: We make no assumption that normal and extensive form decisions are 
equivalent, and generally they will not be equivalent for IP-decision theories.   

•  This issue is particularly important for so-called “dynamic Book” arguments 
 
Dilation Example (in the spirit of Ellsberg’s Paradox) 
 

 
 
 
 
 
 
 
 
 
 

Utility 
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ωωωω2 ωωωω1

1.0 

0.0 

 

P(ωωωω2) axis 

f g

h

.25 .75

m0.5 
0.4 
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Consider the following normal and extensive decision problems. 
 

Normal (strategic) form: 
•  Choose among the mixed option m and constant acts h and 0. 

m is defined as f  if heads and g if tails on a flip of a fair coin. 

•  All (?) decision rules recommend m uniquely from the trio {0, h, m} in 
the normal form 

 
Extensive (sequential) form: 

•  Choose now between the constant act 0 and the sequential option S 

With S you observe the fair coin flip and later choose between m and h.  

But, later m is equivalent to f  if heads, or equivalent to g if tails. 
 

Many IP-decision rules will advise h in a pairwise choice either 
between h and f, or between h and g. 

••••   Then, h (not m) is the outcome of the extensive form decision. 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 7
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h 

h 
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tails 
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2.  IP theory relating to de Finetti’s coherence of previsions.                 
An important, and historically early application of strict dominance for IP-decision 
theory is based on de Finetti’s criterion of coherence of previsions.  Let us first 
review de Finetti’s two related theorems. 
 
Coherence – de Finetti’s notion of coherence begins with  
      an arbitrary partition of states, ΩΩΩΩ    ====    {ω{ω{ω{ωi: i ∈∈∈∈  I}}}} , and 

an arbitrary collection of real random variables, χχχχ ====    {{{{ Xj: j ∈∈∈∈  J}}}},,,, defined on ΩΩΩΩ.   

For each random variable X ∈∈∈∈  χχχχ, the rational agent has a (two-sided) prevision P(X) 

which is to be interpreted as a fair price (both for buying and selling) as follows.  
 

For all real ββββ    >>>>    0000, small enough so that the agent is willing to pay the possible losses, 

the agent is willing  to pay ββββP(X) in order to buy (i.e., to receive) ββββX in return.  

and, willing     to accept ββββP(X) in order to sell (i.e., to pay) ββββX in return. 

In symbols, the agent will accept the gamble   
ββββ[X −−−− P(X)] 

as a change in fortune, for all sufficiently small (positive or negative) ββββ. 
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The agent is required to accept all finite sums of gambles of the preceding form. 

That is, for all finite n and all small, real ββββ1, …, ββββn and all X1, …, Xn ∈∈∈∈  χχχχ, the agent 

will accept the combination of gambles  

∑∑∑∑ ====
n
i 1 ββββi[Xi −−−− P(Xi)]. 

Where ββββi is positive, the agent buys ββββi-units of Xi for a price of  ββββiP(Xi) 

where it is negative, the agent sells ββββi-units of Xi for a price of  ββββiP(Xi). 

 
The previsions are incoherent if there is a uniformly negative acceptable finite 
combination of gambles. That is, if there exists a sum of the form above and εεεε > 0 
such that, for each ωωωω ∈∈∈∈     ΩΩΩΩ, 

∑∑∑∑ ====
n
i 1 ββββi[Xi(ωωωω) −−−− P(Xi)]  < -εεεε.  

Otherwise the agent’s previsions are coherent. 

Where previsions are incoherent, the book that indicates this constitutes a 

combination of gambles that is uniformly, strictly dominated by not-betting (= 0). 
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de Finetti’s Coherence Theorem:   

 

•  A set of previsions are coherent if and only if they are the expected 

values for the respective random variables under a (finitely additive) 

probability distribution over ΩΩΩΩ.  

 

•  When the variables are indicator functions for events (subsets of ΩΩΩΩ), 

coherent previsions are exactly those in agreement with a (finitely 

additive) probability.  And then the |||| ββββi ||||    are the stakes in winner-take-

all bets, where the previsions fix betting rates, P(Xi) : 1-P(Xi). 
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•  de Finetti’s Fundamental Theorem of Previsions 

Suppose coherent (2-sided) previsions are given for all variables in a set χχχχ 

defined with respect to ΩΩΩΩ.  

Let Y be a real-valued function defined on ΩΩΩΩ but not in χχχχ.  

Define:  A = {X: X(ωωωω)  ≤≤≤≤ Y(ωωωω) and X is in the linear span of χχχχ} 

A = {X: X(ωωωω)  ≥≥≥≥ Y(ωωωω) and X is in the linear span of χχχχ} 
Let 

P (Y) = supX ∈∈∈∈  

  

 A P(X)   and   P (Y) = infX ∈∈∈∈ A  P(X) 

 

Then  the 2-sided prevision, P(Y), may be any finite number from P (Y) to P (Y) 

and the resulting enlarged set of previsions is coherent.   

 

Outside this interval, the enlarged set of previsions is incoherent. 
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The Fundamental Theorem provides an early instance of IP-theory where, in 

I.Levi’s (1980) terms relating to I.J.Good’s “Black Box Theory, the ‘I’ stands for  

an  imprecise  prevision, rather than an  indeterminate  prevision. 

That is,  

The interval for a new prevision [P (Y) P (Y)] given by the Fundamental 
Theorem constrains a new, 2-sided prevision for a variable, Y∉∉∉∉χχχχ, while 
preserving coherence of the 2-sided previsions already assigned to X∈∈∈∈χχχχ. 

 
Thus, coherence for 2-sided previsions does not require the rational agent to 

identify precise previsions beyond those in the linear span of the variables in the 

arbitrary set χχχχ.   
 
Specifically, the rational agent is not required by coherence to have determinate 
probabilities defined on an algebra of events, let alone on a power-set of events.  It 
is sufficient to have probabilities defined as-needed for the arbitrary set χχχχ, as might 
arise in a particular decision problem.  
 

•  See, e.g., F. Lad, 1996 for interesting applications of this result.  
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•  Toy Example 1.1 – good, realistic examples are given by Lad:   
ΩΩΩΩ = {1, 2, 3, 4, 5, 6} the outcome of rolling an ordinary die. 
χχχχ is the set of indicator functions for the following four events 

χχχχ    = { {1}, {3,6}, {1,2,3}, {1,2,4} } 
Suppose 2-sided previsions for these four events are given, and agree with the 
judgment that the die is “fair.”  

 P({1}) = 1/6;  P({3,6}) = 1/3;  P({1,2,3}) = P({1,2,4}) = 1/2.  
The set of events for which a precise prevision is fixed by the 2-sided previsions for 
these four events is given by the Fundamental Theorem.   
•  That set does not  form an algebra.  Only 22 of 64 events have precise previsions.  

For instance, by the Fundamental Theorem,  

P ({6}) = 0  <<<<  P ({6}) = 1/3; 

likewise    P ({4}) = 0  <<<<  P ({4}) = 1/3; 

however,           P({4,6}) = 1/3. 

 
Moreover, the smallest algebra containing these 4 events is  

the power set of all 64 events on ΩΩΩΩ. 
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De Finetti’s results apply also for conditional, 2-sided previsions, given an event F.  
These results obtain using called-off previsions of the form  

ΙΙΙΙF ββββ[X −−−− P(X)] 
where ΙΙΙΙF is the indicator function for the conditioning event F. 
Then, with a proviso, coherence assures that coherent called off 2-sided previsions 
are (finitely additive) conditional expectations, given the conditioning event.  
 

The restriction is that the conditioning event not be a null-event.  
Otherwise, a non-Archimedean (non-real valued) theory of previsions results. 

 
When the random variables, Xi, include indicator functions for events, the resulting 
coherent 2-sided previsions include conditional probabilities for these events. 
 

•  Note well:  The called-off previsions correspond only to normal form, and not 
extensive form decisions.  There is no dynamical coherence in de Finetti’s theory – 
merely static aspects of coherence are covered by his 2 theorems.  The previous 
observation about the non-equivalence of normal and extensive form IP-decisions 
reinforces this boundary on the scope of de Finetti’s coherence.  

 

•  Thus, de Finetti’s theory of coherence does not require updating/learning by 
Bayesian conditional probabilities.     
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In order to link de Finetti’s coherence with IP-theory where, the ‘I’ stands for 

indeterminate previsions, we shift from 2-sided, to 1-sided previsions. 
 

Then the decision maker is required only to provide a pair of (1-sided) 

previsions   {P(Xi), P (Xi)} for each random variable Xi in χχχχ, corresponding to a 

largest “buy” price and smallest “sell” price for the corresponding 1-sided 

previsions, depending upon whether ββββI is positive, or negative, respectively. 
 
Generalizations of de Finetti’s Coherence Theorem for 1-sided previsions have been 
given by many researchers.  There are variations, e.g., that use only closed intervals 
of previsions, and those with mixed boundaries for their IP sets of probabilities.   
 
Since these generalizations of de Finetti’s coherence all rely on binary comparisons 
between gambles, identifying those which are favorable versus others, the resulting 
IP sets of probabilities that may be distinguished from one another are convex, with 
relatively simple boundaries – where extreme points of the convex set are also 
exposed.    

•  The common technique uses one or another Separating Hyperplane Theorem. 
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Here are two convex sets with extreme points that are not exposed points. 
(Dotted segments are open boundaries.) 

 
  

 
 
Generalizations of de Finetti’s coherence  that use 1-sided previsions,  

those that persist in using binary comparisons exclusively to determine 

admissible options, in principle cannot distinguish such sets from rivals 

that differ on their boundaries.  

•  In higher dimensions, the dimension of the boundary may be large too! 
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Before concluding this selected review of aspects of de Finetti’s coherence as that 
relates to decision making with IP sets, consider one more link between strict 
dominance and coherence, a link that pertains to de Finetti’s insistence on allowing 
the coherence of (merely) finitely additive previsions. 
 
For those who know my interests in finite additivity, it will come as a mild surprise 
that what comes next has little relation to non-conglomerability.  It is coherent that 
for each hi in a denumerable partition {h1, h2, … }, the conditional previsions 
satisfy:        c1 ≤≤≤≤ P(X |hi) ≤≤≤≤ c2  yet  P(X) >>>> c2. 
There is no contradiction with coherence, which requires that the decision maker 
responds to finitely many (called-off) previsions only at one time.  
 
For what does come next, begin with an arbitrary set of real-valued, random 
variables, {X}, each defined on a common space, which we take as a σσσσ-field of sets.   
It is enough to use the power set of a countable state space,  ΩΩΩΩ = {ωωωωi: i = 1, 2, …}.    
So there are no issues of non-measurable sets. 
 

For each variable, X, the decision maker has a prevision, P(X). 
•  When X is bounded, coherence entails that P(X) is real-valued.   
•  But when X is unbounded, P(X) may be infinite, negative or positive.   
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•  When the prevision for X is a real-value, it is 2-sided, with the real-value 
payoff cX[X – P(X)], where cX is a real number, either positive or negative.   
That is, the decision maker is committed to using P(X) as the “fair price” when 
buying or selling the |cX|-multiples of the random quantity X. 

•  When the prevision for X is infinite-positive, i.e., when X has a value to the 
decision maker greater than any finite amount, then for each real constant k 
and for each cX > 0, we require that the decision maker accepts (i.e., is 
committed to “buy”) a 1-sided payoff cX(X – k).   

 
•  Likewise, when the prevision for X is infinite-negative, with value less than any 

finite amount, then for each real constant k and for cX < 0, we require the 
decision maker accepts (i.e., is committed to “sell”) a 1-sided payoff cX(X – k).    

  
•  In accord with deFinetti’s theory, the decision maker is required to accept a 

finite sum of such real-valued payoffs across (finitely many) variables.    
 

Definition (as per de Finetti):  
Previsions are coherent if there is no finite selection of non-zero constants, cX,  

with the sum of the payoffs uniformly dominated by 0.    
 
The previsions are incoherent otherwise. 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 19

The theory of coherent previsions is not confined to bounded random 

variables, as deFinetti notes (1974, Sections 3.12.4, 6.5.4-6.5.9).   

 

However, in such cases, as previsions are not necessarily real-valued, they 
may induce a non-Archimedean ordering of random variables, as 
illustrated below with the St. Petersburg lottery.  
 

Aside:  The von Neumann-Morgenstern Archimedean axiom requires that 
whenever there is a chain of strict preferences among 3 lotteries, X 〈〈〈〈 Y 〈〈〈〈 Z, 
there are compound lotteries, with 0 < αααα, ββββ < 1, satisfying:  

ααααX ⊕⊕⊕⊕  (1-αααα)Z   〈〈〈〈  Y  〈〈〈〈   ββββX ⊕⊕⊕⊕  (1-ββββ)Z. 
 

Define  The (weak) order « over random variables according to their 
coherent previsions by: 
 
Definition: X « Y   if and only if   P(Y - X) > 0,  

with   X ≡≡≡≡ Y  if and only if  P(Y - X) =  P(X - Y) = 0. 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 20

 
•  Under rather general conditions, illustrated below, the class of 

coherent weak-orders « with coherent previsions for unbounded 

random variables must distinguish by strict preference  « among a 

finite set of equivalent (≈≈≈≈) random variables. 

 

Two (real-valued) random variables are equivalent  if they have  

the same probability distributions over all sets of outcomes. 

 

•  This situation is problematic for Expected Utility theory then, as strict 

preference is NOT a function of probability distributions over utilities! 

It is a challenge to any IP decision theory for unbounded variables that seeks 

to represent coherent preference as a function of sets of expectations 
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There are two cases worth distinguishing in this analysis: 

•  Non-Archimedean Previsions 

•  Discontinuous Previsions. 

 

•  Non-Archimedean Previsions:  Let Z be an unbounded variable so that 

for each coherent prevision, and for each real number r > 0,  

either P(Z) > r or P(Z) < -r.  Then, coherent prevision for Z is infinite.  

An example of this is the familiar St. Petersburg variable, Z, where 

with probability 2-n, Z = 2n.  Flip a fair coin until it lands heads first at 

flip n, when Z equals 2n.   

•  A non-Archimedean ordering of random variables results, 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 22

The von Neumann-Morgenstern Archimedean axiom requires that whenever 

there is a chain of strict preferences among 3 lotteries, X 〈〈〈〈 Y 〈〈〈〈 Z, there are 

compound lotteries, with real-valued 0 < αααα, ββββ < 1, satisfying:  

ααααX ⊕⊕⊕⊕  (1-αααα)Z   〈〈〈〈  Y  〈〈〈〈   ββββX ⊕⊕⊕⊕  (1-ββββ)Z. 

  

When X = 1, Y = 2, and Z = St.P, there is no real-valued 0 < αααα < 1 satisfying 

ααααX ⊕⊕⊕⊕  (1-αααα)Z   〈〈〈〈  Y = 2 

 

•  Discontinous, coherent previsions. 

Let {Xn} (n = 1, …) be a sequence of non-negative random variables that 

converges (pointwise, from below) to the random variable X.  
 

Definition:  Say that previsions are continuous if limn P(Xn) = P(X). 
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•  When random variables are bounded, as is well known (deFinetti), 

coherent previsions are continuous if and only if  they are the 

expectations of some countably additive probability. 

 
•  But when random variables are unbounded, they may fail to be 

continuous, even when probabilities are countably additive. 

 

Previsions that differ from their expected values: 

Let Z be an unbounded, discrete random variable (Z = 1, 2, …). 

Example:  Z  is Geometric(p):   Prob(Z = n) = p(1-p)n-1   (n = 1, 2, …).   

•  Coherence assures that  P(Z) ≥≥≥≥ E[Z] the expected value of Z. 
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Let the prevision for Z,  P(Z),  be greater than its expectation, E[Z], where for the 
Geometric(p), E[Z] = p-1.  So, then we can write P(Z)  =  E[Z] + b,  with b > 0.  
 

•  Let ‘b’ denote the boost that the prevision receives in excess of its expectation.   
 

Possibly, b is +∞∞∞∞ in the example, though assume not in what follows.    
BUT   P(Z)  =  E[Z] + b  (b ≥ 0)  is a coherent prevision!    

If b is finite, the prevision is a 2-sided coherent prevision in deFinetti’s sense, since 
there can be no sure loss when this prevision is combined with coherent previsions 
for bounded variables. 
   

�    But this prevision is not continuous when b > 0.   

For each n (n = 1, 2, …) define the bounded random variable Zn by  
Zn =  0 for states when Z > n, and Zn = Z otherwise.   

So, P(Z) = E(Z), since the can be no “boost” for bounded variables. 
The sequence {Zn} converges from below to Z.    

Of course, since the probability is countably additive, limn E[Zn] = E[Z]. 
However, P(Z) = E[Z] + b.   

•  So,  when b > 0, previsions are not continuous. 
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Strict preference among equivalent random variables. 

Theorem 1:  Let X be a Geometric(p) random variable.  Assume the 

prevision for X, P(X), is finite but greater than its expectation (E[X] = p-1),  

then there exist three equivalent random variables, W1, W2, and W3, 

each with finite prevision, such that no two have the same prevision.  

 

Example: The following illustrates the theorem for the special case of 

fair-coin flipping, e.g., p = ½ , Prob(X = n) = 2-n, n = 1, 2, …, with E[X] = 2.  

 

Let {B, Bc} be the outcome of an independent flip of another fair coin, so 

that Prob(B, X = n) = 2-(n+1)  for n = 1, 2, …  .   

  



Decision Theory for IPs – ISIPTA-07 Tutorial #4 26

Define W1 and W2 by:   

   ωωωω1    ωωωω2       ....  ωωωωn   ....     

     X  =  1     X  =  2       X  =  n 

B    W1 =  2    W1 =  3      W1 =  n+1    

    W2 =  1    W2 =  1      W2 =  1 

 

    X  =  1     X  =  2       X  =  n 

Bc   W1 =  1    W1 =  1      W1 =  1 

   W2 =  2    W2 =  3      W2 =  n+1 

That is: 

  W1(B, X = n) = n+1;  W1(Bc, X = n) = 1   (n = 1, 2, ...) 

and  W2(Bc, X = n) = n+1;  W2(B, X = n) = 1   (n = 1, 2, ...). 
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•  Obviously, W1 and W2 are equivalent.   

•  Each has a Geometric(½) distribution;  

•  Hence, X ≈≈≈≈ W1 ≈≈≈≈ W2.   

•  However,   W1 + W2 – X   =  2.   

 

Thus,      P(W1-X) + P(W2-X)  =   0    if and only if  

P(W1) =  P(W2)  =  P(X) = 2,  

when the prevision for a Geometric(½) variable is its expectation, and 

previsions are continuous, with no boost: b = 0. 
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Non-Archimedean preferences for generalized St. Petersburg variables. 

We turn next to non-Archimedean previsions that result from random 
variables whose coherent prevision is mandated to be infinite, as with the 
St. Petersburg lottery.  
 
Consider the class of Geometric(pm) distributions, pm = 1 - 2-m, m = 2, 3, … . 
 
For each member of this class, we define a generalized St. Petersburg 

gamble, Zm, and construct a set of 2m-1 equivalent random variables  

X1 ≈≈≈≈ X2 ≈≈≈≈ …≈≈≈≈ X2m-1  (≈≈≈≈ Zm), so that coherent previsions, though infinite, 

obey: 

Theorem 2:  ∑
−

=
12

1
m

i [P(Xi) – P(Zm)]  =  2m-1.             (*) 
 
That is, though each of Xi (i = 1, ..., 2m-1) and Zm are pairwise equivalent 
variables, the coherent prevision of their differences cannot all be 0.   
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Example: We illustrate this result for a special case, the Geometric(½).  The 

construction parallels the illustration of Theorem 1.   

 

The St. Petersburg gamble 

•  Let states ωωωωn (n = 1, ….) carry the Geometric(½) distribution,  

Prob(ωωωωn) =  2-n (n = 1, 2, …).   

•  Let {B, Bc} be another fair-coin flip, independent of the states, ωωωωn.    

As before, partition each ωωωωn into two equi-probable cells using {B, Bc} and 

define three (equivalent) random variables,  X, Y, and Z, as follows: 
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   ωωωω1    ωωωω2       ....  ωωωωn   ....     

     Z =  2     Z  =  4       Z  =  2n 

B    X1 =  4    X1 =  8      X1  =  2n+1    

    X2 =  2    X2 =  2      X2  =  2 

 

    Z  =  2     Z  =  4       Z  =  2n 

Bc   X1 =  2    X1 =  2      X1 =  2 

   X2 =  4    X2 =  8      X2 =  2n+1 
 

•  the St. Petersburg random variable: Z(ωωωωn) = 2n, independent of B. 

•  the random variable X1(ωωωωn ∩∩∩∩ B) = 2n+1, and X1(ωωωωn ∩∩∩∩ Bc) = 2. 

•  the random variable X2(ωωωωn ∩∩∩∩ B) = 2, and X2(ωωωωn ∩∩∩∩ Bc) = 2n+1. 
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Though       X1 ≈≈≈≈ X2 ≈≈≈≈ Z,  

if previsions are coherent,  P(X1+ X2 - 2Z)  =  2.   

This is in contradiction with the hypothesis that the prevision of the 

difference between equivalent random variables is 0, as that requires  

P(X1-Z) + P(X2-Z) =  P(X1+ X2 - 2Z) =  0. 

 

•  Thus, de Finetti’s coherence of previsions, respect for uniform, strict 

dominance over a (countable) partition, precludes preference 

according to SEU, when discontinuous or non-Archimedean previsions 

obtain and equivalent variables cannot be given equal previsions. 

 
 



Decision Theory for IPs – ISIPTA-07 Tutorial #4 32

Return to question the relation between IP-decision theory and simple dominance 
Reconsider this decision problem. 

 

Utility 
axis 

ωωωω1 

1.0 

0.4 

0.0 

 

P(ωωωω2) axis 

f g 

h

ωωωω2 .25 .75 

Act h is 
never Bayes 

but never 
beaten

�

 

Only {f,g} are Bayes-admissible from the triple {f,g,h};  
however, all pairs are Bayes-admissible in pairwise choices.   

Levi calls h second worst in the triple {f,g,h}. 
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Contrast three coherent decision rules for extending Expected Utility  
[EU] theory when probability – but not cardinal utility –  is indeterminate.   

The decision problems involve (bounded) sets of lotteries, where the 
outcomes have well-defined cardinal utility but where the (act-
independent) states are uncertain, represented by a convex set of 
probabilities PPPP. 
 
•  ΓΓΓΓ-Maximin (Gilboa-Schmeidler) – maximize minimum expectations over PPPP. 

•  Maximality (Walley) – admissible choices are undominated in  
expectations over over PPPP  by any single alternative choice. 

•  E-admissibility (Levi/Savage) – admissible choices have Bayes’ models, 
i.e., they maximize EU for some probability in the (convex) set PPPP. 

 

Each rule has EU Theory as a special case when probability is determinate,  
i.e., when PPPP  is comprised by a single probability distribution.   

And each rule is coherent in the sense that sure loss (Book) is not possible. 
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The three rules are chosen to reflect the following progression, where each 

rule relaxes more of the ordering assumption than does its predecessors: 

 

•  ΓΓΓΓ-Maximin produces a (real-valued) ordering of options; hence, 

defined by binary comparisons – but it fails Independence. 

 

•  Maximality does not generate an ordering of options; however, it is 

given by binary comparisons. 

 

•  E-admissibility does not generate an ordering, nor is it given by 

binary comparisons. 
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•  The ΓΓΓΓ-Maximin solution is {h}.   
•  The E-admissible solution set is {f, g}. 
•  And Maximality finds all three options admissible, {f, g, h}.   

 
Thus, each rule gives a different set of admissible options in this problem. 
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Create a convex option space by allowing mixed strategies. 
Expected Utility for the (Bayes) mixed options ααααf ⊕⊕⊕⊕ (1-αααα)g is in pink; they maximize EU at p(ωωωω2) = .5 (blue) 

The Bayes equalizer (mixed) act is m = .5f ⊕⊕⊕⊕ .5g 

�����������������
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•  The ΓΓΓΓ-Maximin solution is the EU-equalizer {m}.  
•  The E-admissible and Maximally admissible options are the same set of Bayes solutions (pink). 
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The agreement of the 3 decision rules on Bayes solutions is no accident 

as: 

•  Walley (Theorem 3.9.5, 1990) establishes that when the option set is 

convex and the (convex) set of probabilities PPPP         is closed, then 

E-admissibility and Maximality  give the same solution sets:  

      Their admissible sets are precisely the Bayes-admissible options.  

•  And then it also follows that the ΓΓΓΓ-Maximin admissible acts are a 

(proper) subset of the Bayes-admissible options. 

Under these conditions, pairwise comparisons of acts 
suffice to determine the set of Bayes-admissible choices. 
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D.Pearce (1984), reports a related result which is important for understanding the 

underlying connection between dominance and Bayes-admissibility. 

Theorem (Pearce, 1984):  In a decision problem under uncertainty,  

•  with finitely many states and finitely generated option set O,  

•  with utility of outcomes determinate,  

if an option o ∈∈∈∈  O fails to be Bayes-admissible,  

then o is uniformly, strictly dominated by a finite mixture from O.   

Aside:  This result can be extended to infinite decision problems. 
 

In this sense, incoherent choices suffer deFinetti’s penalty – being 
uniformly strictly dominated by a mixed option – within the decision at 
hand –  and not merely for previsions, which are specialized decisions.  
 

In accord with Pearce’s Theorem, in the example above,  
the mixed act m = .5f ⊕⊕⊕⊕  .5g strictly dominates h. 
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I conclude by illustrating how this insight relates to coherent choice in the 
setting of games, which is the domain where Pearce directs his analysis, 
 

Game 1: Iterative elimination of dominated strategies. 
Consider the following 2 ×××× 3 game, with utility payoffs (row, column).  

                L      M      R 
T (2,1) (1,4) (0,3) 

B (1,8) (0,2) (1,3) 
There is no strict dominance between Row-player’s two options. 
But from Column-player’s perspective, R is never a best reply.    
For example, the mixed strategy [.25L  ⊕⊕⊕⊕   .75M] strictly dominates R. 

So, if Row-player models Column player as one who plays Bayes-
admissible options, from Row-player’s perspective, state R may be 
eliminated.  Then T dominates B.  And if Column-player models Row-
player also as playing Bayes-admissible options (and models Column-
player likewise), then Column-player may eliminate state B.  This results in 
the choices (T, M), which also is the unique Nash equilibrium of this game. 
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Game 2:  An undominated option that is not part of a Nash equilibrium 
Consider the following 2××××2××××4,  3-player game: where player-1 chooses a 
Row, player-2 chooses a Column, and player 3 chooses a Matrix {A,B,C,D}. 

The numbers are the utility payoffs to player 3. 
 

 
 
 

     
        A               B           C            D  
 
Matrix D is undominated by any mixture of {A,B,C}; however, it is not part of a 
Nash equilibrium.  This is because all of D’s Bayes-models live off  the surface of 
independence between Row “states” and Column “states,” which is where all Nash-
equilibria strategies must reside!  D is not a best reply to a probability on R ×××× C that 
makes row-states independent of column-states.  Why does rationality in games 
require such independence? (It is not a matter of act/state independence.)  

•  When we apply IP-decision making to non-cooperative games, then coherence 
– avoiding dominated options – does not result in an endorsement of Nash’s 
criterion of equilibria!  What results is the theory of Rationalizable strategies. 

 L R
T 9 0
B 0 0

 L R
T 0 9
B 9 0

L R
T 0 0
B 0 9

L R 
T 6 0 
B 0 6 
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Summary 
 

1.  Review of structural (not normative) assumptions for this overview. 
Moral hazards and dominance 
State-dependent utilities 
Normal versus extensive form decision making 
 

2.  IP theory relating to de Finetti’s coherence of previsions. 
Fundamental Theorem: imprecise vs. indeterminate previsions 
Limitations of binary comparisons with coherent IP-sets 
Dominance and coherent previsions for unbounded variables 
 

3. IP theories related to relaxing canonical axioms of SEU theory 
ΓΓΓΓ-Maximin, Maximality, and E-Admissibility  
On dominance and rationalizability-- D.Pearce’s (1984) result. 

      


